Mock Exam - Midterm 1

RUS $:-3\left(\frac{X_{1}+X_{n}}{2}\right)+4$

$$
\Leftrightarrow \frac{\min +\max }{2}
$$

1. (6 points) Define the extreme mean $(E M)$ of a dataset to be the average of its largest and smallest values. Let

Show that for any dataset $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
f(x)=-\underbrace{-3 x+4}
$$

 $f(x)$ $\max : f\left(x_{1}\right)$

$$
\underbrace{\operatorname{EM}(\underbrace{f\left(\frac{x_{1}+x_{n}}{2}\right)}_{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)})}_{\frac{f\left(x_{1}\right)+f\left(x_{n}\right)}{2}}=f(\underbrace{E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)}) .
$$

$$
\text { min: } f\left(x_{n}\right)
$$

LHS=
2. (10 points) Consider a new loss function,

$$
(-3 x,+4)+\left(-3 x_{n}+4\right)
$$

$$
L(h, y)=e^{(h-y)^{2}}
$$

2
Given a dataset $y_{1}, y_{2}, \ldots, y_{n}$, let $R(h)$ represent the empirical risk for the dataset using this loss function.
a) (4 points) For the dataset $\{1,3,4\}$, calculate $R(2)$. Simplify your answer as much as possible without a calculator.
b) (6 points) For the same dataset $\{1,3,4\}$, perform one iteration of gradient descent on $R(h)$, starting at an initial prediction of $h_{0}=2$ with a step size of $\alpha=\frac{1}{2}$. Show your work and simplify your answer.
3. (8 points) Suppose you have a dataset

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}
$$

with $n=8$ ordered pairs such that the variance of $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ is 50 . Let m be the slope of the regression line fit to this data.
Suppose now we fit a regression line to the dataset $\quad \operatorname{Var}(x)=\frac{1}{n} \eta_{i}\left(x_{i}-\mu\right)^{2}$

$$
\left\{\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}
$$

where the first two y-values hive been swapped. Let m^{\prime} be the slope of this new regression line. $\mu_{x}, \mu_{y}=0$ If $x_{1}=3, y_{1}=7, x_{2}=8$, and $y_{2}=2$, what is the difference between the new slope and the old slope? That is, what is $m^{\prime}-m$? The answer you get should be a number with no variables.
"cross variance"
Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of the formula without \bar{y}.
4. (9 points) Consider the (dataset, sh)owin/brelow. $y=X \hat{\omega}$
$m=\frac{\overline{2}_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\underbrace{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}_{\text {"total variance" }}}$

$21+16-6-56=-35+10=-25\left[\begin{array}{ll|l|l}x_{4} y_{2} & x_{2} y_{1}, & 5 & -1 \\ 0 & -3 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}4 \\ 2\end{array}\right]=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) \cdot y_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$ (2)
a) (5 point \%) We want to use multiple regression to fit a prediction rule of the form

$$
=-\frac{2 \Im}{8 \cdot 52}=-\frac{1}{16}
$$

) (4 points) For the X and \vec{y} that you have written down, let \vec{w} be the optimal parameter vector, which comes from solving the normal equations $X^{T} X \vec{w}=X^{T} \vec{y}$. Let $\vec{e}=\vec{y}-X \vec{w}$ be the error vector, and let e_{i} be the i th
$=\frac{1}{16}$ component of this error vector. Show that

$$
\begin{aligned}
& \begin{array}{r}
\text { estimation } \\
R(h)=\frac{1}{n} \sum_{i=1}^{n} e^{\left(h-y_{i}\right)^{2}}
\end{array} \\
& y_{i} 134 \quad(h=2) \\
& 2\left(n-y_{i}\right) \geq \quad-2 \quad-4 \quad R(2)=\frac{1}{3}\left(2 e+e^{4}\right) \\
& \left(h-y_{i}\right)^{2} 114 \\
& e^{\left(h-y_{i}\right)^{2}} e \quad e \quad e^{4} \\
& \hat{h}_{i+1}=\hat{h}_{i}-\alpha \cdot R^{\prime}\left(h_{i}\right) \text { grad descent update rule } \\
& R(h)=\frac{1}{n} \Sigma_{i} e^{\left(h-y_{i}\right)^{2}} \Rightarrow R^{\prime}(h)=\frac{1}{n} \Sigma_{i} e^{\left(h-y_{i}\right)^{2}} \\
& \frac{d}{d x} e^{x}=e^{x} \quad 2\left(h-y_{i}\right) \\
& R(2)=\frac{1}{3}\left(e \cdot 2+e \cdot-2+e^{4} \cdot-4\right)=-\frac{4}{3} e^{4} \\
& h_{\text {new }}=2-\frac{1}{2} \cdot\left(-\frac{4}{3}\right) e^{4} \\
& =2+\frac{2}{3} e^{4}
\end{aligned}
$$

In dis 4:

11

$$
y=X^{\prime \prime} \omega^{\prime \prime}
$$

$\omega \in \mathbb{R}^{3 \times 1}$

$$
\begin{aligned}
& e=a-\hat{a} \text { or } \hat{a}-a \\
& e\|b,\| \text { space }(b)
\end{aligned}
$$

each row is X_{i}, is one data sample

To "locate" a straight line, I need only 2 print.
\hat{y} in columan space (X), such that, it acheives minimized "error"

$$
e=\hat{y}-y
$$

$$
\left\{\begin{array}{l}
\|\hat{y}-y\|_{i} v^{2} \\
e^{(\hat{y}-y)^{2}} v
\end{array}\right.
$$

$\mathbb{R}^{n \times c} \wedge_{\text {component }}$ / colum.

$$
\begin{aligned}
& X^{\top} y=\underbrace{X^{\top} X \omega}_{C_{C X C}} \\
& \left(x^{\top} x\right)^{-1} x^{\top} y=\hat{\omega} \\
& \hat{y}=x \cdot \hat{\omega} \\
& =\underbrace{x\left(x^{\top} x\right)^{-1} x^{\top} y}_{\text {projection matrix }} \\
& y \text { onto column }(x)
\end{aligned}
$$

