Midterm 1 - DSC 40A, Winter 2024

Instructions

- This is a 50 -minute exam consisting of 5 questions worth a total of 40 points.
- The only allowed resource is the provided reference sheet.
- No calculators.
- Please write neatly and stay within the provided boxes.
- You may fill out the front page only until you are instructed to start.

Statement of Academic Integrity

By submitting your exam, you are attesting to the following statement of academic integrity.
I will act with honesty and integrity during this exam.
\square

PID: \square

Seat you are in: \square

Version - A

1. (10 points) Consider a dataset D with 5 data points $\{7,5,1,2, a\}$, where a is a positive real number. Note that a is not necessarily an integer.
a) (2 points) Express the mean of D as a function of a, simplify the expression as much as possible.

$$
\text { Mean }_{D}=3+\frac{a}{5}
$$

b) (3 points) Depending on the range of a, the median of D could assume one of three possible values. Write out all possible median of D along with the corresponding range of a for each case. Express the ranges using double inequalities, e.g., i.e. $3<a \leq 8$:

$$
\begin{aligned}
& \text { Median }_{D}=\square \text { if a is in the range of } 0<a \leq 2 \\
& \text { Median }_{D}=\square \text { if a is in the range of } 2<a<5 \\
& \text { Median }_{D}=\square \text { if a is in the range of } a \geq 5
\end{aligned}
$$

c) (5 points) Given that Mean $_{d}<\operatorname{Median}_{D}$, determine the range of a that satisfies this condition. make sure to show your work

Range of a:

Supporting Work:

Solution: Since there are 3 possible median values, we will have to discuss each situation separately. In case 1 , when $0<a \leq 2$, Median $_{D}=2$, therefore we have:

$$
\begin{array}{r}
3+\frac{a}{5}<2 \\
a<-5
\end{array}
$$

But $a<-5$ is in conflict with the condition $0<a \leq 2$, therefore there is no solution in this situation, and Median $_{D}=2$ is impossible.
In case 2 when $2<a<5$, Median $_{D}=a$, therefore we have:

$$
\begin{aligned}
3+\frac{a}{5} & <a \\
3 & <\frac{4}{5} a \\
a & >\frac{15}{4}
\end{aligned}
$$

So a has to be larger than $\frac{15}{4}$. But remember from the prerequisite condition that $2<a<5$. To satisfy both conditions, we must have $\frac{15}{4}<a<5$.
In case 3 when $a \geq 5$, Median $_{D}=5$, therefore we have:

$$
\begin{gathered}
3+\frac{a}{5}<5 \\
a<10
\end{gathered}
$$

combining with the prerequisite condition, we have $5 \leq a<10$
Combining the range of case 2 and 3 , we have $\frac{15}{4}<a<10$ as our final answer.
2. (4 points) Let $R_{s q}(h)$ represent the mean squared error of a constant prediction h for a given dataset. For the dataset $\left\{3, y_{1}\right\}$, the graph of $R_{s q}(h)$ has its minimum at the point $\left(5, r_{1}\right)$. Find out the value of y_{1} and r_{1}

$$
y_{1}=\square \text { and } r_{1}=\square 4
$$

Solution: The mean square error is written as:

$$
R_{s q}(h)=\frac{1}{n} \sum_{i=0}^{n}\left(y_{i}-h\right)^{2}
$$

Since we only have two data points $(n=2)$, the equation simplifies to:

$$
R_{s q}(h)=\frac{1}{2}\left(\left(y_{0}-h\right)^{2}+\left(y_{1}-h\right)^{2}\right)
$$

Taking derivative with respect to h , we have:

$$
\frac{d R_{s q}(h)}{d h}=-\left(y_{0}-h\right)-\left(y_{1}-h\right)
$$

We know that the derivative has to be 0 at the local minima, therefore at $h=5$, we have:

$$
\begin{aligned}
\frac{d R_{s q}(h)}{d h}=-(3-5)-\left(y_{1}-5\right) & =0 \\
y_{1} & =7
\end{aligned}
$$

So we know that the dataset is 3,7 . Given all these information, we can calculate r_{1} with:

$$
\begin{aligned}
R_{s q}(5) & =\frac{1}{2}\left(\left(y_{0}-5\right)^{2}+\left(y_{1}-5\right)^{2}\right) \\
& =\frac{1}{2}\left((3-5)^{2}+(7-5)^{2}\right) \\
& =\frac{1}{2}(4+4)=4
\end{aligned}
$$

3. (10 points) The hyperbolic cosine function is defined as $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$. In this problem, we aim to prove the convexity of this function using power series expansion.
a) (3 points) Prove that $f(x)=x^{n}$ is convex if n is an even integer.

Proof:

Solution: Take the second derivative of f :

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1} \\
f^{\prime \prime}(x) & =n(n-1) x^{n-2}
\end{aligned}
$$

If n is even, then $\mathrm{n}-2$ must also be even, therefore $f^{\prime \prime}(x)=n(n-1) x^{n-2}$ will always be a positive number. This means the second derivative of $f(x)$ is always larger than 0 and therefore passes the second derivative test.
b) (2 points) Power series expansion is a powerful tool to analyze complicated functions. In power series expansion, a function can be written as an infinite sum of polynomial functions with certain
coefficients. For example, the exponential function can be written as:

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots \tag{1}
\end{equation*}
$$

where n ! denotes the factorial of n, defined as the product of all positive integers up to n, i.e. $n!=$ $1 \times 2 \times 3 \times \ldots \times(n-1) \times n$. Given the power series expansion of e^{x} above, write the power series expansion of e^{-x} and explicitly specify the first 5 terms, i.e., similar to the format of Equation 1 :

$$
e^{-x}=\sum_{n=0}^{\infty} \quad=
$$

Solution: $e^{-x}=\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots$.
c) (5 points) Using the conclusions you reached in a) and b), prove that $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ is convex.

Proof:

Solution: Given that:

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots \\
e^{-x} & =\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots
\end{aligned}
$$

We can add their power series expansion together, and we will obtain:

$$
\begin{aligned}
e^{x}+e^{-x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(x)^{n}+(-x)^{n}}{n!}
\end{aligned}
$$

Within this infinite sum, if n is even, then the negative sign in $(-x)^{n}$ will disappear; if n is odd, then the negative sign in $(-x)^{n}$ will be kept and travel out of the parenthesis. Therefore we have:

$$
\begin{aligned}
e^{x}+e^{-x} & =\sum_{n=0}^{\infty} \frac{x^{n}+x^{n}}{n!}(\text { for even } \mathrm{n})+\sum_{n=0}^{\infty} \frac{x^{n}-x^{n}}{n!}(\text { for odd } \mathrm{n}) \\
& =\sum_{n=0}^{\infty} \frac{2 x^{n}}{n!}(\text { for even } \mathrm{n})
\end{aligned}
$$

Therefore, $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ is a sum of x^{n} where n is even. Since we have already proved in a) that x^{n} are always convex for even $\mathrm{n}, \cosh (x)$ is an infinite sum of convex function and therefore also convex.
4. (10pt) Note that we have two simplified closed form expressions for the estimated slope w in simple linear regression that you have already seen in discussions and lectures:

$$
\begin{align*}
w & =\frac{\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \tag{1}\\
w & =\frac{\sum_{i}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \tag{2}
\end{align*}
$$

where we have dataset $D=\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$, sample means $\bar{x}=\frac{1}{n} \sum_{i} x_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i} y_{i}$. Without further explanation, \sum_{i} means $\sum_{i=1}^{n}$
a) (6pt) Are (1) and (2) equivalent? That is, is the following equality true? Prove or disprove it.

$$
\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}=\sum_{i}\left(y_{i}-\bar{y}\right) x_{i}
$$

Proof:

Solution: True.

$$
\begin{aligned}
& \sum_{i}\left(x_{i}-\bar{x}\right) y_{i}=\sum_{i}\left(y_{i}-\bar{y}\right) x_{i} \\
& \Leftrightarrow \sum_{i} x_{i} y_{i}-\bar{x} \sum_{i} y_{i}=\sum_{i} x_{i} y_{i}-\bar{y} \sum_{i} x_{i} \\
& \Leftrightarrow \bar{x} \sum_{i} y_{i}=\bar{y} \sum_{i} x_{i} \\
& \Leftrightarrow \frac{1}{n} \sum_{i} x_{i} \sum_{i} y_{i}=\frac{1}{n} \sum_{i} y_{i} \sum_{i} x_{i}
\end{aligned}
$$

In fact, the least square estimator for slope is unique.
b) (2pt) True or False: If the dataset shifted right by a constant distance a, that is, we have the new dataset $D_{a}=\left(x_{1}+a, y_{1}\right), \ldots,\left(x_{n}+a, y_{n}\right)$, then will the estimated slope w change or not?
OTrue
\bigcirc False

Solution: False. By (1), the only term affecting w is $x_{i}-\bar{x}$, which is unchanged after shifting. Therefore, w is unchanged.
c) $(2 \mathrm{pt})$ True or False: If the dataset shifted up by a constant distance b, that is, we have the new dataset $D_{b}=\left[\left(x_{1}, y_{1}+b\right), \ldots,\left(x_{n}, y_{n}+b\right)\right]$, then will the estimated slope w change or not?TrueFalse

Solution: False. By (2).
5. (6 points)

Suppose the following information is given for a linear regression:

$$
X=\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \quad \vec{w}^{*}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Where X is the design matrix, \vec{y} is the observation vector, and \vec{w}^{*} is the optimal parameter vector. Solve for parameter a and busing the normal equation, show your work.

Answer:

Supporting Work:

Solution: Since \vec{w}^{*} is the optimal parameter vector, it must satisfy the Normal Equation:

$$
X^{T} X \vec{w}=X^{T} \vec{y}
$$

The left hand side of the equation will read:

$$
X^{T} X \vec{w}=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
4 \\
11
\end{array}\right]
$$

The right hand side of the equation is given by:

$$
X^{T} \vec{y}=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a+b \\
2 a-b
\end{array}\right]
$$

By setting the left hand side and right hand side equal to each other, we will obatin the following system of equations:

$$
\left[\begin{array}{c}
4 \\
11
\end{array}\right]=\left[\begin{array}{c}
a+b \\
2 a-b
\end{array}\right]
$$

So we obtained this set of equations:

$$
\begin{aligned}
& 4=a+b \\
& 11=2 a-b
\end{aligned}
$$

To sole this equation set, we can add them together:

$$
\begin{aligned}
4+11 & =a+b+2 a-b \\
3 a & =15 \\
a & =5 \\
b & =-1
\end{aligned}
$$

