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• This is a 50-minute exam consisting of 5 questions worth a total of 40 points.
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1. (10 points) Consider a dataset D with 5 data points {7, 5, 1, 2, a}, where a is a positive real number.
Note that a is not necessarily an integer.

a) (2 points) Express the mean of D as a function of a, simplify the expression as much as possible.

MeanD = 3 + a
5

b) (3 points) Depending on the range of a, the median of D could assume one of three possible values.
Write out all possible median of D along with the corresponding range of a for each case. Express the
ranges using double inequalities, e.g., i.e. 3 < a ≤ 8:

MedianD = 2 if a is in the range of 0 < a ≤ 2

MedianD = a if a is in the range of 2 < a < 5

MedianD = 5 if a is in the range of a ≥ 5

c) (5 points) Given that Meand < MedianD, determine the range of a that satisfies this condition. make
sure to show your work

Range of a:

Supporting Work:
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Solution: Since there are 3 possible median values, we will have to discuss each situation sepa-
rately. In case 1, when 0 < a ≤ 2, MedianD = 2, therefore we have:

3 +
a

5
< 2

a < −5

But a < −5 is in conflict with the condition 0 < a ≤ 2, therefore there is no solution in this
situation, and MedianD = 2 is impossible.

In case 2 when 2 < a < 5, MedianD = a, therefore we have:

3 +
a

5
< a

3 <
4

5
a

a >
15

4

So a has to be larger than 15
4 . But remember from the prerequisite condition that 2 < a < 5. To

satisfy both conditions, we must have 15
4 < a < 5.

In case 3 when a ≥ 5, MedianD = 5, therefore we have:

3 +
a

5
< 5

a < 10

combining with the prerequisite condition, we have 5 ≤ a < 10

Combining the range of case 2 and 3, we have 15
4 < a < 10 as our final answer.

2. (4 points) Let Rsq(h) represent the mean squared error of a constant prediction h for a given dataset.
For the dataset {3, y1}, the graph of Rsq(h) has its minimum at the point (5,r1). Find out the value of y1
and r1

y1 = 7 and r1 = 4

Solution: The mean square error is written as:

Rsq(h) =
1

n

n∑
i=0

(yi − h)2

Since we only have two data points (n = 2), the equation simplifies to:

Rsq(h) =
1

2
((y0 − h)2 + (y1 − h)2)
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Taking derivative with respect to h, we have:

dRsq(h)

dh
= −(y0 − h)− (y1 − h)

We know that the derivative has to be 0 at the local minima, therefore at h = 5, we have:

dRsq(h)

dh
= −(3− 5)− (y1 − 5) = 0

y1 = 7

So we know that the dataset is 3, 7. Given all these information, we can calculate r1 with:

Rsq(5) =
1

2
((y0 − 5)2 + (y1 − 5)2)

=
1

2
((3− 5)2 + (7− 5)2)

=
1

2
(4 + 4) = 4

3. (10 points) The hyperbolic cosine function is defined as cosh(x) = 1
2 (e

x + e−x). In this problem, we aim
to prove the convexity of this function using power series expansion.

a) (3 points) Prove that f(x) = xn is convex if n is an even integer.

Proof:

Solution: Take the second derivative of f:

f ′(x) = nxn−1

f ′′(x) = n(n− 1)xn−2

If n is even, then n-2 must also be even, therefore f ′′(x) = n(n− 1)xn−2 will always be a positive
number. This means the second derivative of f(x) is always larger than 0 and therefore passes
the second derivative test.

b) (2 points) Power series expansion is a powerful tool to analyze complicated functions. In power
series expansion, a function can be written as an infinite sum of polynomial functions with certain
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coefficients. For example, the exponential function can be written as:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+ .... (1)

where n! denotes the factorial of n, defined as the product of all positive integers up to n, i.e. n! =
1 × 2 × 3 × ... × (n − 1) × n. Given the power series expansion of ex above, write the power series
expansion of e−x and explicitly specify the first 5 terms, i.e., similar to the format of Equation 1:

e−x =
∑∞

n=0 =

Solution: e−x =
∑∞

n=0
(−x)n

n! = 1− x+ x2

2 − x3

6 + x4

24 + .....
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c) (5 points) Using the conclusions you reached in a) and b), prove that cosh(x) = 1
2 (e

x + e−x) is
convex.

Proof:

Solution: Given that:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+ ....

e−x =

∞∑
n=0

(−x)n

n!
= 1− x+

x2

2
− x3

6
+

x4

24
+ ....

We can add their power series expansion together, and we will obtain:

ex + e−x =

∞∑
n=0

xn

n!
+

∞∑
n=0

xn

n!

=

∞∑
n=0

(x)n + (−x)n

n!

Within this infinite sum, if n is even, then the negative sign in (−x)n will disappear; if n is odd,
then the negative sign in (−x)n will be kept and travel out of the parenthesis. Therefore we have:

ex + e−x =

∞∑
n=0

xn + xn

n!
(for even n) +

∞∑
n=0

xn − xn

n!
(for odd n)

=

∞∑
n=0

2xn

n!
(for even n)
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Therefore, cosh(x) = ex+e−x

2 is a sum of xn where n is even. Since we have already proved in a)
that xn are always convex for even n, cosh(x) is an infinite sum of convex function and therefore
also convex.
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4. (10pt) Note that we have two simplified closed form expressions for the estimated slope w in simple
linear regression that you have already seen in discussions and lectures:

w =

∑
i(xi − x)yi∑
i(xi − x)2

(1)

w =

∑
i(yi − y)xi∑
i(xi − x)2

(2)

where we have dataset D = [(x1, y1), . . . , (xn, yn)], sample means x = 1
n

∑
i xi, y = 1

n

∑
i yi. Without

further explanation,
∑

i means
∑n

i=1

a) (6pt) Are (1) and (2) equivalent? That is, is the following equality true? Prove or disprove it.∑
i

(xi − x)yi =
∑
i

(yi − y)xi

Proof:
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Solution: True. ∑
i

(xi − x)yi =
∑
i

(yi − y)xi

⇔
∑
i

xiyi − x
∑
i

yi =
∑
i

xiyi − y
∑
i

xi

⇔ x
∑
i

yi = y
∑
i

xi

⇔ 1

n

∑
i

xi

∑
i

yi =
1

n

∑
i

yi
∑
i

xi

In fact, the least square estimator for slope is unique.

b) (2pt) True or False: If the dataset shifted right by a constant distance a, that is, we have the new dataset
Da = (x1 + a, y1), . . . , (xn + a, yn), then will the estimated slope w change or not?

True False

Solution: False. By (1), the only term affecting w is xi−x, which is unchanged after shifting. Therefore,
w is unchanged.

c) (2pt) True or False: If the dataset shifted up by a constant distance b, that is, we have the new dataset
Db = [(x1, y1 + b), . . . , (xn, yn + b)], then will the estimated slope w change or not?

True False

Solution: False. By (2).
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5. (6 points)

Suppose the following information is given for a linear regression:

X =

[
1 2
1 −1

]
y⃗ =

[
a
b

]
w⃗∗ =

[
1
2

]
Where X is the design matrix, y⃗ is the observation vector, and w⃗∗ is the optimal parameter vector. Solve
for parameter a and b using the normal equation, show your work.

Answer:

Supporting Work:
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Solution: Since w⃗∗ is the optimal parameter vector, it must satisfy the Normal Equation:

XTXw⃗ = XT y⃗

The left hand side of the equation will read:

XTXw⃗ =

[
1 1
2 −1

] [
1 2
1 −1

] [
1
2

]
=

[
2 1
1 5

] [
1
2

]
=

[
4
11

]
The right hand side of the equation is given by:

XT y⃗ =

[
1 1
2 −1

] [
a
b

]
=

[
a+ b
2a− b

]
By setting the left hand side and right hand side equal to each other, we will obatin the following system
of equations: [

4
11

]
=

[
a+ b
2a− b

]
So we obtained this set of equations:

4 = a+ b

11 = 2a− b

To sole this equation set, we can add them together:

4 + 11 = a+ b+ 2a− b

3a = 15

a = 5

b = −1
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