Midterm 1 - DSC 40A, Winter 2024

Instructions

- This is a 50-minute exam consisting of 5 questions worth a total of 40 points.
- The only allowed resource is the provided reference sheet.
- No calculators.
- Please write neatly and stay within the provided boxes.
- You may fill out the **front page only** until you are instructed to start.

Statement of Academic Integrity

By submitting your exam, you are attesting to the following statement of academic integrity.

I will act with honesty and integrity during this exam.

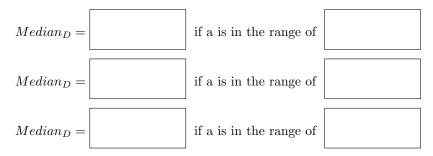
Name:	
PID:	
Seat you are in:	

Version - A

1. (10 points) Consider a dataset D with 5 data points $\{7, 5, 1, 2, a\}$, where a is a positive real number. Note that a is not necessarily an integer.

a) (2 points) Express the mean of D as a function of a, simplify the expression as much as possible.

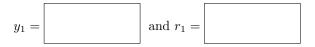
b) (3 points) Depending on the range of a, the median of D could assume one of three possible values. Write out all possible median of D along with the corresponding range of a for each case. Express the ranges using double inequalities, e.g., i.e. $3 < a \leq 8$:



c) (5 points) Given that $Mean_d < Median_D$, determine the range of a that satisfies this condition. make sure to show your work

Range of a:			
~			
Supporting Work:			

2. (4 points) Let $R_{sq}(h)$ represent the mean squared error of a constant prediction h for a given dataset. For the dataset $\{3, y_1\}$, the graph of $R_{sq}(h)$ has its minimum at the point $(5, r_1)$. Find out the value of y_1 and r_1



3. (10 points) The hyperbolic cosine function is defined as $cosh(x) = \frac{1}{2}(e^x + e^{-x})$. In this problem, we aim to prove the convexity of this function using power series expansion.

a) (3 points) Prove that $f(x) = x^n$ is convex if n is an even integer.

Proof:			

b) (2 points) Power series expansion is a powerful tool to analyze complicated functions. In power series expansion, a function can be written as an infinite sum of polynomial functions with certain coefficients. For example, the exponential function can be written as:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots$$
(1)

where n! denotes the factorial of n, defined as the product of all positive integers up to n, i.e. $n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$. Given the power series expansion of e^x above, write the power series expansion of e^{-x} and explicitly specify the first 5 terms, i.e., similar to the format of Equation 1:

 $e^{-x} = \sum_{n=0}^{\infty} =$

c) (5 points) Using the conclusions you reached in a) and b), prove that $cosh(x) = \frac{1}{2}(e^x + e^{-x})$ is convex.

Proof:

4. (10pt) Note that we have two simplified closed form expressions for the estimated slope w in simple linear regression that you have already seen in discussions and lectures:

$$w = \frac{\sum_{i} (x_i - \overline{x}) y_i}{\sum_{i} (x_i - \overline{x})^2} \tag{1}$$

$$w = \frac{\sum_{i} (y_i - \overline{y}) x_i}{\sum_{i} (x_i - \overline{x})^2} \tag{2}$$

where we have dataset $D = [(x_1, y_1), \ldots, (x_n, y_n)]$, sample means $\overline{x} = \frac{1}{n} \sum_i x_i$, $\overline{y} = \frac{1}{n} \sum_i y_i$. Without further explanation, \sum_i means $\sum_{i=1}^n y_i$.

a) (6pt) Are (1) and (2) equivalent? That is, is the following equality true? Prove or disprove it.

Proof:

$$\sum_{i} (x_i - \overline{x}) y_i = \sum_{i} (y_i - \overline{y}) x_i$$

b) (2pt) True or False: If the dataset shifted right by a constant distance a, that is, we have the new dataset $D_a = (x_1 + a, y_1), \ldots, (x_n + a, y_n)$, then will the estimated slope w change or not?

 \bigcirc True \bigcirc False

c) (2pt) True or False: If the dataset shifted up by a constant distance b, that is, we have the new dataset $D_b = [(x_1, y_1 + b), \dots, (x_n, y_n + b)]$, then will the estimated slope w change or not?

 \bigcirc True \bigcirc False

5. (6 points)

Answer:

Suppose the following information is given for a linear regression:

$$X = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} a \\ b \end{bmatrix} \qquad \vec{w^*} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Where X is the design matrix, \vec{y} is the observation vector, and \vec{w}^* is the optimal parameter vector. Solve for parameter a and b using the normal equation, show your work.

Supporting Work: