DSC 40A - Group Work Session 1

 due Monday, Jan. 8 at 11:59pmWrite your solutions to the following problems by either typing them up or handwriting them on another piece of paper. One person from each group should submit your solutions to Gradescope and tag all group members so everyone gets credit.

This worksheet won't be graded on correctness, but rather on good-faith effort. Even if you don't solve any of the problems, you should include some explanation of what you thought about and discussed, so that you can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in your assigned discussion section. You can also self-organize a group and meet outside of discussion section for 80 percent credit. You may not do the groupwork alone.

1 Summation Notation

You can often verify for yourself if something is true about summation notation by "expanding" the summation symbol and seeing if the property holds. For instance, suppose we want to see if it is true that

$$
\sum_{i=1}^{n} c \cdot x_{i}=c \sum_{i=1}^{n} x_{i}
$$

We start by "expanding" $\sum_{i=1}^{n} c \cdot x_{i}$:

$$
\sum_{i=1}^{n} c \cdot x_{i}=c x_{1}+c x_{2}+c x_{3}+\ldots+c x_{n}
$$

Now we see that the c can be factored out:

$$
\begin{aligned}
& =c\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right) \\
& =c \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

This is a simple proof that the property is true. On the other hand, we can prove that a property doesn't hold in the same way: by expanding both sides and showing that they are not equal.

Problem 1.

Show that $\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\left(\sum_{i=1}^{n} x_{i}\right)+\left(\sum_{i=1}^{n} y_{i}\right)$.

Solution:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) & =\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)+\cdots+\left(x_{n}+y_{n}\right) \\
& =\left(x_{1}+x_{2}+\ldots x_{n}\right)+\left(y_{1}+y_{2}+\ldots y_{n}\right) \\
& =\left(\sum_{i=1}^{n} x_{i}\right)+\left(\sum_{i=1}^{n} y_{i}\right)
\end{aligned}
$$

Problem 2.

Find a simple expression for $\sum_{i=1}^{n} c$ not involving summation notation. Show that your expression is correct.
Solution: The simple expression is $c * n$, as shown by expanding the sum:

$$
\begin{aligned}
\sum_{i=1}^{n} c & =c+c+\cdots+c \\
& =c * n
\end{aligned}
$$

2 Chaining Inequalities

Suppose we have collected a bunch of numbers, y_{1}, \ldots, y_{n}. Let's assume, too, that these numbers are in sorted order, so that $y_{1} \leq y_{2} \leq \ldots \leq y_{n}$.

The midpoint of y_{1}, \ldots, y_{n} is the average of the smallest and largest number:

$$
\text { midpoint }=\frac{y_{1}+y_{n}}{2}
$$

Intuitively, the midpoint is at most y_{n} and is at least y_{1}; it lies somewhere in the middle of these two numbers. We can easily prove this with a chain of inequalities.
First, we show that the midpoint is at most y_{n}. We start with the definition:

$$
\text { midpoint }=\frac{y_{1}+y_{n}}{2}
$$

We can do anything to the right hand side that makes it bigger, keeping in mind that we're trying to get it to look like y_{n}. Right now there is y_{1} hanging out; can we simply change it to a y_{n} ? Yes! Remember that $y_{n} \geq y_{1}$, so this would make the right hand side bigger. Therefore, we have to write \leq :

$$
\leq \frac{y_{n}+y_{n}}{2}
$$

We can simplify this:

$$
=\frac{2 y_{n}}{2}
$$

Notice that we wrote $=$ on the last line, not \leq. This is because the line is indeed equal to the one before it.

$$
=y_{n}
$$

We have made a chain of inequalities and equalities; this one looks like $=, \leq,=,=$. Since \leq is the "weakest link" in the chain, the strongest statement we can make is that the midpoint is $\leq y_{n}$, but this is what we wanted to say.

Problem 3.

Prove that the midpoint is $\geq y_{1}$.

Solution:

$$
\begin{aligned}
y_{1} & \leq y_{n} \\
y_{1}+y_{1} & \leq y_{n}+y_{1} \\
\frac{2 y_{1}}{2} & \leq \frac{y_{n}+y_{1}}{2} \\
y_{1} & \leq \text { midpoint }
\end{aligned}
$$

Problem 4.

Suppose y_{1}, \ldots, y_{n} are all positive numbers. The geometric mean of y_{1}, \ldots, y_{n} is defined to be:

$$
\left(y_{1} \cdot y_{2} \cdots y_{n}\right)^{1 / n} .
$$

Prove that the geometric mean is less than or equal to y_{n} and greater than or equal to y_{1} using a chain of inequalities.

Solution: Assuming the numbers are ordered, let's first show that the geometric mean $\geq y_{1}$. We know that the below inequalities hold by definition .

$$
\begin{aligned}
& y_{1} \leq y_{1} \\
& y_{1} \leq y_{2} \\
& y_{1} \leq y_{3} \\
& y_{1} \leq y_{4} \\
& \cdots \\
& y_{1} \leq y_{n}
\end{aligned}
$$

Since $y_{i}>0 \forall i$, we can multiply the n inequalities to get

$$
y_{1} y_{1} \ldots y_{1} \leq y_{1} y_{2} \ldots y_{n}
$$

So,

$$
\begin{aligned}
y_{1}^{n} & \leq y_{1} y_{2} \ldots y_{n} \\
\left(y_{1}^{n}\right)^{1 / n} & \leq\left(y_{1} y_{2} \ldots y_{n}\right)^{1 / n} \\
y_{1} & \leq \text { geometric mean }
\end{aligned}
$$

You can similarly show that geometric mean $\leq y_{n}$ by using the fact that $y_{i} \leq y_{n}$ for $i=1,2, \ldots n$.

3 Minimizers and Maximizers

We've seen that machine learning problems must first be formulated as mathematical problems. Many of these mathematical problems turn out to be optimization problems: finding the value that minimizes or maximizes a function.
For a function of one variable $f(x)$, a value x^{*} is said to be a minimizer of $f(x)$ if

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } x
$$

Similarly, x^{*} is said to be a maximizer of $f(x)$ if

$$
f\left(x^{*}\right) \geq f(x) \text { for all } x
$$

Notice that a function can have multiple minimizers or maximizers. For example, a constant function like $f(x)=5$ is minimized at all values of x, and it's also maximized at all values of x.

Problem 5.

Should the blank below be filled in with the word minimizer or maximizer or neither? Prove your result.

If x^{*} is a minimizer of $f(x)$ then it's a \qquad of $g(x)=5 f(x)+3$.

Solution: We should fill in the blank with the word minimizer. A proof of this fact follows.
The definition of minimizer is that

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } x
$$

Then by manipulating this inequality, we can see that

$$
\begin{aligned}
5 f\left(x^{*}\right) & \leq 5 f(x) \quad \text { for all } x \\
5 f\left(x^{*}\right)+3 & \leq 5 f(x)+3 \text { for all } x \\
g\left(x^{*}\right) & \leq g(x) \text { for all } x .
\end{aligned}
$$

This is exactly what it means for x^{*} to be a minimizer of $g(x)$.

Problem 6.

Should the blank below be filled in with the word minimizer or maximizer or neither? Prove your result.

If x^{*} is a minimizer of $f(x)$ then it's a \qquad of $g(x)=-(f(x))^{2}$.

Solution: We can't fill in the blank with either minimizer or maximizer. We know from the definition of minimizer that

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } x
$$

Sometimes it's true that

$$
\left(f\left(x^{*}\right)\right)^{2} \leq(f(x))^{2}
$$

for example, if $f\left(x^{*}\right)=3$ and $f(x)=4$. However it can also be true that

$$
\left(f\left(x^{*}\right)\right)^{2}>(f(x))^{2}
$$

for example if $f\left(x^{*}\right)=-3$ and $f(x)=1$. So in general, we can't say anything about the relationship between $\left(f\left(x^{*}\right)\right)^{2}$ and $(f(x))^{2}$, which means that x^{*} is not guaranteed to be a minimizer or maximizer of $g(x)$.

