
Lecture 3 – Mean Squared Error and Empirical
Risk Minimization

DSC 40A, Winter 2024



News

▶ No discussion on Monday (no need to turn in the
worksheet – it will not be graded)



Agenda▶ Recap from Lecture 2 – minimizing mean absolute error
and formulating mean squared error.▶ Minimizing mean squared error.▶ Comparing different minimizers.▶ Empirical risk minimization.



Recap from Lecture 2



The median minimizes mean absolute error▶ Our problem was: find ℎ∗ which minimizes the mean
absolute error, 𝑅(ℎ) = 1𝑛 𝑛∑𝑖=1 |𝑦𝑖 − ℎ|.▶ Regardless of if 𝑛 is odd or even, the answer isℎ∗ = Median(𝑦1, … , 𝑦𝑛). The best prediction, in terms of
mean absolute error, is the median.▶ When 𝑛 is odd, this answer is unique.▶ When 𝑛 is even, any number between the middle two

data points also minimizes mean absolute error.▶ We define the median of an even number of data
points to be the mean of the middle two data points.



The mean absolute error is not differentiable▶ We can’t compute 𝑑𝑑ℎ |𝑦𝑖 − ℎ|.▶ Remember: |𝑦𝑖 − ℎ| measures how far ℎ is from 𝑦𝑖.▶ Is there something besides |𝑦𝑖 − ℎ| which:
1. Measures how far ℎ is from 𝑦𝑖, and
2. is differentiable?



The mean absolute error is not differentiable▶ We can’t compute 𝑑𝑑ℎ |𝑦𝑖 − ℎ|.▶ Remember: |𝑦𝑖 − ℎ| measures how far ℎ is from 𝑦𝑖.▶ Is there something besides |𝑦𝑖 − ℎ| which:
1. Measures how far ℎ is from 𝑦𝑖, and
2. is differentiable?

Discussion Question

Which of these would work?

a) 𝑒|𝑦𝑖−ℎ| b) |𝑦𝑖 − ℎ|2
c) |𝑦𝑖 − ℎ|3 d) cos(𝑦𝑖 − ℎ)



The squared error▶ Let ℎ be a prediction and 𝑦 be the true value (i.e. the
“right answer”). The squared error is:|𝑦 − ℎ|2 = (𝑦 − ℎ)2▶ Like absolute error, squared error measures how far ℎ is
from 𝑦.▶ But unlike absolute error, the squared error is
differentiable: 𝑑𝑑ℎ(𝑦 − ℎ)2 =



The new idea▶ Find ℎ∗ by minimizing the mean squared error:𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2▶ Strategy: Take the derivative, set it equal to zero, and
solve for the minimizer.



Minimizing mean squared error



𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2
Discussion Question

Which of these is 𝑑𝑅sq/𝑑ℎ?
a) 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ) b) 0
c)

𝑛∑𝑖=1 𝑦𝑖 d) 2𝑛 𝑛∑𝑖=1 (ℎ − 𝑦𝑖)



Solution𝑑𝑅sq𝑑ℎ = 𝑑𝑑ℎ [1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2]



Set to zero and solve for minimizer



The mean minimizes mean squared error

▶ Our new problem was: find ℎ∗ which minimizes the mean
squared error, 𝑅𝑠𝑞(ℎ) = 1𝑛 ∑𝑛𝑖=1(𝑦𝑖 − ℎ)2.▶ The answer is: Mean(𝑦1, … , 𝑦𝑛).▶ The best prediction, in terms of mean squared error,

is the mean.▶ This answer is always unique!



Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are salaries. Which plot could be𝑅sq(ℎ)?

(a) (b)

(c) (d)



Comparing the median and mean



Outliers▶ Consider our original dataset of 5 salaries.90,000 94,000 96,000 120,000 160,000▶ As it stands, the median is 96,000 and the mean is
112,000.▶ What if we add 300,000 to the largest salary?90,000 94,000 96,000 120,000 460,000▶ Now, the median is still 96,000 but the mean is 172,000!▶ Key Idea: The mean is quite sensitive to outliers.



Outliers▶ The mean is quite sensitive to outliers.

▶ |𝑦4 − ℎ| is 10 times as big as |𝑦3 − ℎ|.▶ But (𝑦4 − ℎ)2 is 100 times as big as (𝑦3 − ℎ)2.▶ This “pulls” ℎ∗ towards 𝑦4.▶ Squared error can be dominated by outliers.



Example: Data Scientist Salaries▶ Dataset of 2,016 self-reported data science salaries in the
United States from the 2022 StackOverflow survey.▶ Median = $86,700.▶ Mean = $501,425,531.▶ Min = $20.▶ Max = $1,000,000,000,000.▶ 90th Percentile: $700,000.



Example: Data Scientist Salaries



Example: Income Inequality

Chart: Lisa Charlotte Rost, Datawrapper



Example: Income Inequality
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Shaded areas indicate U.S. recessions Source: U.S. Census Bureau fred.stlouisfed.org



Empirical risk minimization



A general framework▶ We started with the mean absolute error:𝑅(ℎ) = 1𝑛 𝑛∑𝑖=1 |𝑦𝑖 − ℎ|▶ Then we introduced the mean squared error:𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2▶ They have the same form: both are averages of some
measurement that represents how different ℎ is from the
data.



A general framework▶ Definition: A loss function 𝐿(ℎ, 𝑦) takes in a prediction ℎ
and a true value (i.e. a “right answer”), 𝑦, and outputs a
number measuring how far ℎ is from 𝑦 (bigger = further).▶ The absolute loss: 𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|▶ The squared loss: 𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2



A general framework▶ Suppose that 𝑦1, … , 𝑦𝑛 are some data points, ℎ is a
prediction, and 𝐿 is a loss function. The empirical risk is
the average loss on the data set:𝑅𝐿(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿(ℎ, 𝑦𝑖)▶ The goal of learning: find ℎ that minimizes 𝑅𝐿. This is
called empirical risk minimization (ERM).



The learning recipe

1. Pick a loss function.

2. Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

▶ Key Idea: The choice of loss function determines the
properties of the result. Different loss function = different
minimizer = different prediction!▶ Absolute loss yields the median.▶ Squared loss yields the mean.▶ The mean is easier to calculate but is more sensitive

to outliers.



Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:𝐿0,1(ℎ, 𝑦) = {0, if ℎ = 𝑦1, if ℎ ≠ 𝑦
2. Minimize empirical risk:𝑅0,1(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿0,1(ℎ, 𝑦𝑖)

Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are all distinct. Find 𝑅0,1(𝑦1).
a) 0 b) 1𝑛 c) 𝑛−1𝑛 d) 1



Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:𝐿0,1(ℎ, 𝑦) = {0, if ℎ = 𝑦1, if ℎ ≠ 𝑦
2. Minimize empirical risk:𝑅0,1(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿0,1(ℎ, 𝑦𝑖)
Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are all distinct. Find 𝑅0,1(𝑦1).
a) 0 b) 1𝑛 c) 𝑛−1𝑛 d) 1



Minimizing empirical risk

𝑅0,1(ℎ) = 1𝑛 𝑛∑𝑖=1 {0, if ℎ = 𝑦𝑖1, if ℎ ≠ 𝑦𝑖



Different loss functions lead to different
predictions

Loss Minimizer Outliers Differentiable𝐿abs median insensitive no𝐿sq mean sensitive yes𝐿0,1 mode insensitive no

▶ The optimal predictions are all summary statistics that
measure the center of the data set in different ways.



Summary



Summary▶ ℎ∗ = Mean(𝑦1, … , 𝑦𝑛) minimizes 𝑅𝑠𝑞(ℎ) = 1𝑛 ∑𝑛𝑖=1(𝑦𝑖 − ℎ)2, i.e.
the mean minimizes mean squared error.▶ The mean absolute error and the mean squared error fit
into a general framework called empirical risk
minimization.▶ Pick a loss function. We’ve seen absolute loss,|𝑦 − ℎ|2, squared loss, (𝑦 − ℎ)2, and 0-1 loss.▶ Pick a way to minimize the average loss (i.e. empirical

risk) on the data.▶ By changing the loss function, we change which
prediction is considered the best.



Next time

▶ Spread – what is the meaning of the value of 𝑅𝑎𝑏𝑠(ℎ∗)?𝑅𝑠𝑞(ℎ∗)?▶ Creating a new loss function and trying to minimize the
corresponding empirical risk.▶ We’ll get stuck and have to look for a new way to

minimize.


