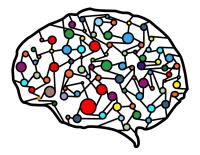
Lecture 3 – Mean Squared Error and Empirical Risk Minimization



DSC 40A, Winter 2024

News

No discussion on Monday (no need to turn in the worksheet – it will not be graded)

Agenda

- Recap from Lecture 2 minimizing mean absolute error and formulating mean squared error.
- Minimizing mean squared error.
- Comparing different minimizers.
- Empirical risk minimization.

Recap from Lecture 2

The median minimizes mean absolute error

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$.
- Regardless of if n is odd or even, the answer is h* = Median(y₁,..., y_n). The best prediction, in terms of mean absolute error, is the median.
 - When *n* is odd, this answer is unique.
 - When n is even, any number between the middle two data points also minimizes mean absolute error.
 - We define the median of an even number of data points to be the mean of the middle two data points.

The mean absolute error is not differentiable

We can't compute
$$\frac{d}{dh}|y_i - h|$$
.

Remember: $|y_i - h|$ measures how far h is from y_i .

- ▶ Is there something besides $|y_i h|$ which:
 - 1. Measures how far *h* is from *y*_i, and
 - 2. is differentiable?

The mean absolute error is not differentiable

► We can't compute
$$\frac{d}{dh}|y_i - h|$$
.

Remember: $|y_i - h|$ measures how far h is from y_i .

- Is there something besides |y_i h| which:
 - 1. Measures how far h is from y_i, and
 - 2. is differentiable?

Discussion Question

Which of these would work?

- b) $|y_i h|^2$
- a) $e^{|y_i h|}$ c) $|y_i h|^3$ d) $\cos(y_i - h)$

The squared error

Let h be a prediction and y be the true value (i.e. the "right answer"). The squared error is:

$$|y - h|^2 = (y - h)^2$$

- Like absolute error, squared error measures how far h is from y.
- But unlike absolute error, the squared error is differentiable:

$$\frac{d}{dh}(y-h)^2 =$$

The new idea

Find *h*^{*} by minimizing the **mean squared error**:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take the derivative, set it equal to zero, and solve for the minimizer. Minimizing mean squared error

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Discussion Question

Which of these is dR_{sq}/dh ?

a)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - h)$$

b) 0
c) $\sum_{i=1}^{n} y_i$
d) $\frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Solution

$$\frac{dR_{sq}}{dh} = \frac{d}{dh} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 \right]$$

Set to zero and solve for minimizer

The mean minimizes mean squared error

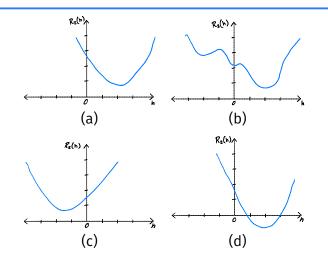
• Our new problem was: find h^* which minimizes the mean squared error, $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$.

• The answer is: Mean (y_1, \dots, y_n) .

- The best prediction, in terms of mean squared error, is the mean.
- This answer is always unique!

Discussion Question

Suppose y_1, \dots, y_n are salaries. Which plot could be $R_{sq}(h)$?



Comparing the median and mean

Outliers

- Consider our original dataset of 5 salaries.
 - 90,000 94,000 96,000 120,000 160,000
- As it stands, the median is 96,000 and the mean is 112,000.
- What if we add 300,000 to the largest salary?
 - 90,000 94,000 96,000 120,000 460,000
- Now, the **median is still 96,000** but the **mean is 172,000**!
- Key Idea: The mean is quite sensitive to outliers.

Outliers

The mean is quite sensitive to outliers.

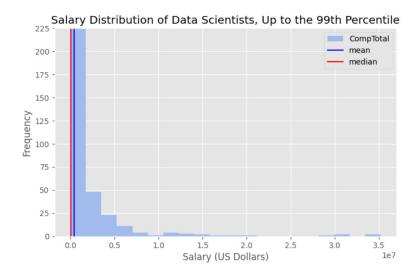


- ► $|y_4 h|$ is 10 times as big as $|y_3 h|$.
- But (y₄ h)² is 100 times as big as (y₃ h)².
 ▶ This "pulls" h* towards y₄.
- Squared error can be dominated by outliers.

Example: Data Scientist Salaries

- Dataset of 2,016 self-reported data science salaries in the United States from the 2022 StackOverflow survey.
- Median = \$86,700.
- Mean = \$501,425,531.
- ▶ Min = \$20.
- Max = \$1,000,000,000,000.
- 90th Percentile: \$700,000.

Example: Data Scientist Salaries



Example: Income Inequality

Average vs median income

Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by the currencies' respective <u>purchasing power</u> (PPP).

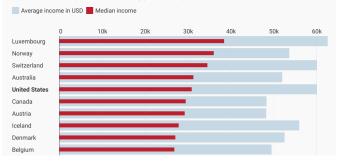
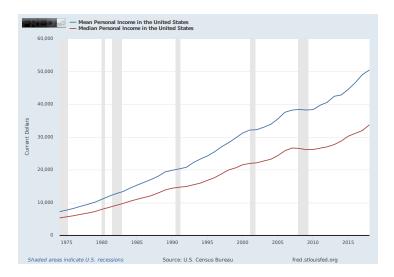


Chart: Lisa Charlotte Rost, Datawrapper

Example: Income Inequality



Empirical risk minimization

A general framework

We started with the mean absolute error:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Then we introduced the mean squared error:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

They have the same form: both are averages of some measurement that represents how different h is from the data.

A general framework

- Definition: A loss function L(h, y) takes in a prediction h and a true value (i.e. a "right answer"), y, and outputs a number measuring how far h is from y (bigger = further).
- The absolute loss:

$$L_{\rm abs}(h,y) = |y-h|$$

► The **squared loss**:

 $L_{\rm sq}(h,y)=(y-h)^2$

A general framework

Suppose that y₁,..., y_n are some data points, h is a prediction, and L is a loss function. The empirical risk is the average loss on the data set:

$$R_L(h) = \frac{1}{n} \sum_{i=1}^n L(h, y_i)$$

The goal of learning: find h that minimizes R_L. This is called empirical risk minimization (ERM).

The learning recipe

- 1. Pick a loss function.
- 2. Pick a way to minimize the average loss (i.e. empirical risk) on the data.

- Key Idea: The choice of loss function determines the properties of the result. Different loss function = different minimizer = different prediction!
 - Absolute loss yields the median.
 - Squared loss yields the mean.
 - The mean is easier to calculate but is more sensitive to outliers.

Example: 0-1 Loss

1. Pick as our loss function the **0-1 loss**:

$$L_{0,1}(h, y) = \begin{cases} 0, & \text{if } h = y \\ 1, & \text{if } h \neq y \end{cases}$$

2. Minimize empirical risk:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{0,1}(h, y_i)$$

Example: 0-1 Loss

1. Pick as our loss function the **0-1 loss**:

$$L_{0,1}(h, y) = \begin{cases} 0, & \text{if } h = y \\ 1, & \text{if } h \neq y \end{cases}$$

2. Minimize empirical risk:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{0,1}(h, y_i)$$

Discussion Question

Suppose y_1, \dots, y_n are all distinct. Find $R_{0,1}(y_1)$. a) 0 b) $\frac{1}{n}$ c) $\frac{n-1}{n}$ d) 1

Minimizing empirical risk

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

Different loss functions lead to different predictions

Loss	Minimizer	Outliers	Differentiable
L _{abs}	median	insensitive	no
L _{sq}	mean	sensitive	yes
L _{0,1}	mode	insensitive	no

The optimal predictions are all summary statistics that measure the center of the data set in different ways.

Summary

Summary

- ► $h^* = \text{Mean}(y_1, \dots, y_n)$ minimizes $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$, i.e. the mean minimizes mean squared error.
- The mean absolute error and the mean squared error fit into a general framework called empirical risk minimization.
 - ▶ Pick a loss function. We've seen absolute loss, $|y h|^2$, squared loss, $(y h)^2$, and 0-1 loss.
 - Pick a way to minimize the average loss (i.e. empirical risk) on the data.
- By changing the loss function, we change which prediction is considered the best.

Next time

- Spread what is the meaning of the value of $R_{abs}(h^*)$? $R_{sq}(h^*)$?
- Creating a new loss function and trying to minimize the corresponding empirical risk.
 - We'll get stuck and have to look for a new way to minimize.