Lecture 4 – ERM, Center and Spread

Winter 2024 DSC 40A, Spring 2023)

Last time: the mean minimizes mean squared error

- Our problem was: find h^* which minimizes the mean squared error, $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$.
 - ► The answer is: Mean $(y_1, ..., y_n)$.
 - ► The best prediction, in terms of mean squared error, is the mean.
 - This answer is always unique!

Last time: the mean minimizes mean squared error

- Our problem was: find h^* which minimizes the mean squared error, $R_{sa}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|^{\frac{1}{2}}$.
 - The answer is: $Mean(y_1, ..., y_n)$.

► The **best prediction**, in terms of mean squared error, is the mean.

This answer is always unique!

Comparing the median and mean

Outliers

Consider our original dataset of 5 salaries.

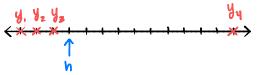
- As it stands, the **median is 96,000** and the **mean is 112,000**.
- What if we add 300,000 to the largest salary?

```
90,000 94,000 96,000 120,000 460,000
```

- Now, the **median is still 96,000** but the **mean is 172,000**!
- Key Idea: The mean is quite sensitive to outliers.

Outliers

► The mean is quite **sensitive** to outliers.

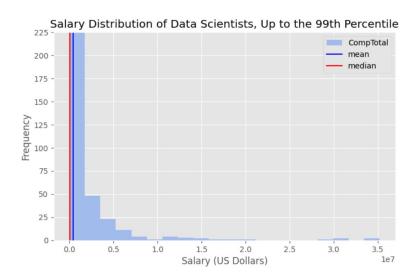


- $|y_4 h|$ is 10 times as big as $|y_3 h|$.
- ► But $(y_4 h)^2$ is 100 times as big as $(y_3 h)^2$.
 - ► This "pulls" h^* towards y_4 .
- Squared error can be dominated by outliers.

Example: Data Scientist Salaries

- ▶ Dataset of 2,016 self-reported data science salaries in the United States from the 2022 StackOverflow survey.
- ► Median = \$86,700.
- Mean = \$501,425,531.
- ► Min = \$20.
- ► Max = \$1,000,000,000,000.
- ▶ 90th Percentile: \$700,000.

Example: Data Scientist Salaries



Example: Income Inequality

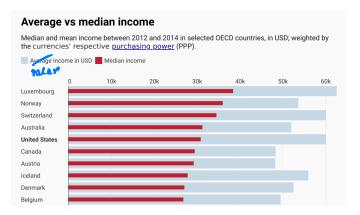
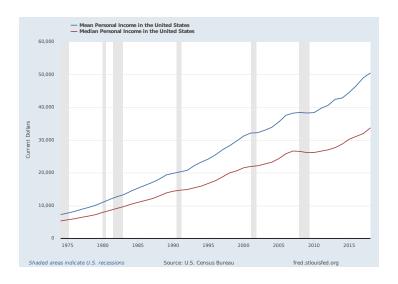
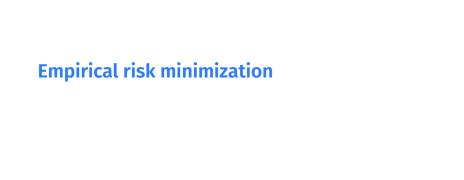


Chart: Lisa Charlotte Rost, Datawrapper

Example: Income Inequality





A general framework

We started with the mean absolute error:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

► Then we introduced the **mean squared error**:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

► They have the same form: both are averages of some measurement that represents how different *h* is from the data.

A general framework

- Definition: A loss function L(h, y) takes in a prediction h and a true value (i.e. a "right answer"), y, and outputs a number measuring how far h is from y (bigger = further).
- ► The absolute loss:

$$L_{\rm abs}(h,y) = |y - h|$$

► The squared loss:

$$L_{sq}(h,y) = (y-h)^2$$

A general framework

Suppose that y₁,..., y_n are some data points, h is a prediction, and L is a loss function. The empirical risk is the average loss on the data set:

$$R_{L}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_{i})$$

The goal of learning: find h that minimizes R_L . This is called **empirical risk minimization (ERM)**.

Empirical risk minimization (ERM)

- ▶ **Goal**: Given a dataset $y_1, y_2, ..., y_n$, determine the best prediction h^* .
- Strategy:
 - Choose a loss function, L(h, y), that measures how far any particular prediction h is from the "right answer" y.
 - Minimize empirical risk (also known as average loss) over the entire dataset. The value(s) of h that minimize empirical risk are the resulting "best predictions".

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

Key Idea

- ► The choice of loss function determines the properties of the result.
- Different loss function = different minimizer = different prediction!
 - Absolute loss yields the median.
 - Squared loss yields the mean.
 - ► The mean is easier to calculate but is more sensitive to outliers.
- ► ERM is a "recipe" that can be used to derive many machine learning algorithms.

Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

$$L_{0,1}(h,y) = \begin{cases} 0, & \text{if } h = y \\ 1, & \text{if } h \neq y \end{cases}$$

2. Minimize empirical risk:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{0,1}(h, y_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & h = y_i \\ 1, & h \neq y_i \end{cases}$$

Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

$$L_{0,1}(h,y) = \begin{cases} 0, & \text{if } h = y \\ 1, & \text{if } h \neq y \end{cases}$$

2. Minimize empirical risk:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{0,1}(b_{1}v_{i})$$

$$= \frac{1}{n} \left(\chi(y_{1}, y_{1}) + \chi(y_{2}) + ... + \chi(y_{n}, y_{n}) \right)$$
on

Discussion Question

Suppose $y_1, ..., y_n$ are all distinct. Find $R_{0,1}(y_1)$.

a) 0 b) $\frac{1}{n}$ c) $\frac{n-1}{n}$ d) 1

Minimizing empirical risk

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

$$= \frac{1}{n} \left(\frac{1}{n} \right) \text{ of } y_i \text{ shot are } \neq h$$
Minimizer: pick h to be the "most common" data point,
i.e., the mode

Different loss functions lead to different predictions

Loss	Minimizer	Outliers	Differentiable
L _{abs}	median	insensitive	no
$L_{\sf sq}$	mean	sensitive	yes
L _{0,1}	mode	insensitive	no

► The optimal predictions are all summary statistics that measure the center of the data set in different ways.

Summary

Summary

- ► $h^* = \text{Mean}(y_1, ..., y_n)$ minimizes $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$, i.e. the mean minimizes mean squared error.
- The mean absolute error and the mean squared error fit into a general framework called empirical risk minimization.
 - Pick a loss function. We've seen absolute loss, $|y h|^2$, squared loss, $(y h)^2$, and 0-1 loss.
 - Pick a way to minimize the average loss (i.e. empirical risk) on the data.
- By changing the loss function, we change which prediction is considered the best.

Center and spread

What does it mean?

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- ► The input h* that minimizes R(h) is some measure of the center of the data set.
 - e.g. median, mean, mode.
- ► The minimum output *R*(*h**) represents some measure of the **spread**, or variation, in the data set.

Absolute loss

The empirical risk for the absolute loss is

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

- $ightharpoonup R_{abs}(h)$ is minimized at $h^* = \text{Median}(y_1, y_2, ..., y_n)$.
- ► Therefore, the minimum value of $R_{abs}(h)$ is

$$R_{abs}(h^*) = R_{abs}(Median(y_1, y_2, ..., y_n))$$

= $\frac{1}{n} \sum_{i=1}^{n} |y_i - Median(y_1, y_2, ..., y_n)|.$

Mean absolute deviation from the median

▶ The minimium value of $R_{abs}(h)$ is the mean absolute deviation from the median.

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \text{Median}(y_1, y_2, ..., y_n)|$$

It measures how far each data point is from the median, on average. 3,3,3,3

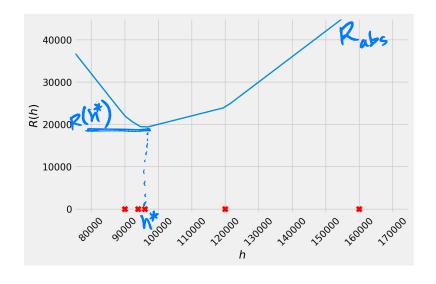
Discussion Question

For the data set 2,3,3,4, what is the mean absolute deviation from the median? $\frac{1}{2} = \frac{1}{4} \left(\frac{12-31+13-31}{12-31} + \frac{13-31}{12-31} + \frac{13-31}{12-$

b)
$$\frac{1}{2}$$

$$mAPM = \frac{1}{4} (|2-3|+|3-3|+$$

Mean absolute deviation from the median



Squared loss

► The empirical risk for the squared loss is

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

- $Arr R_{sq}(h)$ is minimized at $h^* = \text{Mean}(y_1, y_2, ..., y_n)$.
- Therefore, the minimum value of $R_{sq}(h)$ is

$$R_{sq}(h^*) = R_{sq}(Mean(y_1, y_2, ..., y_n))$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - Mean(y_1, y_2, ..., y_n))^2.$$

Variance

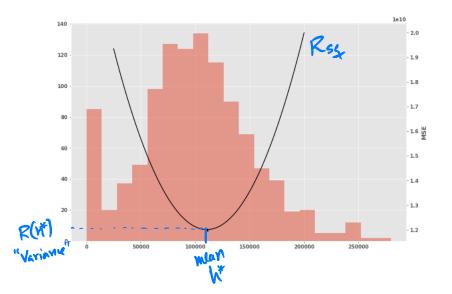
The minimium value of $R_{sq}(h)$ is the mean squared deviation from the mean, more commonly known as the variance.

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, ..., y_n))^2$$

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - M)^2$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the standard deviation.

Variance



0-1 loss

► The empirical risk for the 0-1 loss is

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

- ► This is the proportion (between 0 and 1) of data points not equal to *h*.
- $Arr R_{0,1}(h)$ is minimized at $h^* = \text{Mode}(y_1, y_2, ..., y_n)$.
- Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- The minimium value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

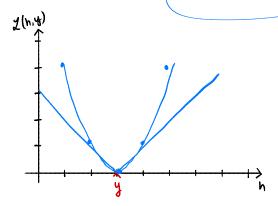
Summary of center and spread

- ▶ Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- ► The minimum values of these risk functions are various measures of **spread**.
- There are many different ways to measure both center and spread. These are sometimes called descriptive statistics.

A new loss function

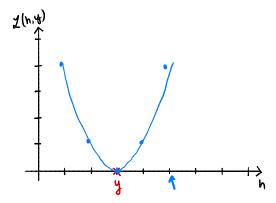
Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{abs}(h, y) = |y h|$



Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{sq}(h, y) = (y h)^2$:

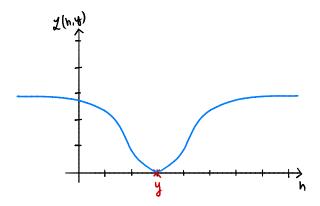


Discussion Question

Suppose L considers all outliers to be equally bad. What would it look like far away from y?

- a) flat
- b) rapidly decreasing
- c) rapidly increasing

A very insensitive loss



 \triangleright We'll call this loss L_{ucsd} because we made it up at UCSD.

Discussion Question

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)}$$

b) 1)-
$$e^{-(y-h)^2}$$

c)
$$1 - (y - h)^2$$

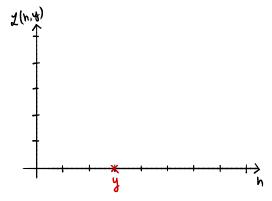
d)
$$1 - e^{-|y-h|}$$

Adding a scale parameter

- Problem: L_{ucsd} has a fixed scale. This won't work for all datasets.
 - If we're predicting temperature, and we're off by 100 degrees, that's bad.
 - If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
 - What we consider to be an outlier depends on the scale of the data.
- Fix: add a scale parameter, σ :

$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$

Scale parameter controls width of bowl



Empirical risk minimization

- \triangleright We have salaries $y_1, y_2, ..., y_n$.
- To find prediction, ERM says to minimize the average loss:

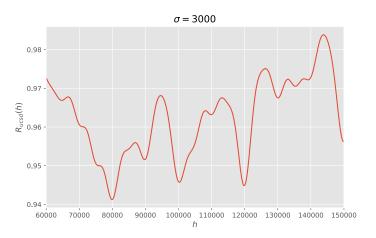
$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{ucsd}(h, y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

Let's plot R_{ucsd}

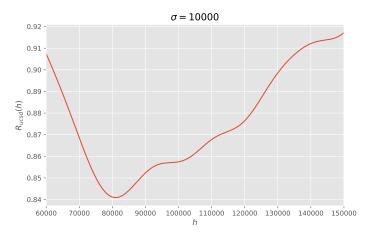
Recall:

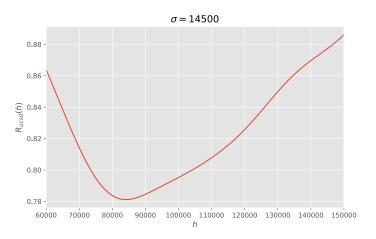
$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

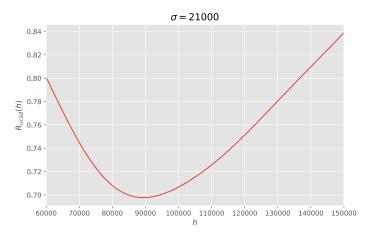
- Once we have data $y_1, y_2, ..., y_n$ and a scale σ , we can plot $R_{ucsd}(h)$.
- Let's try several scales, σ , for the data scientist salary data.

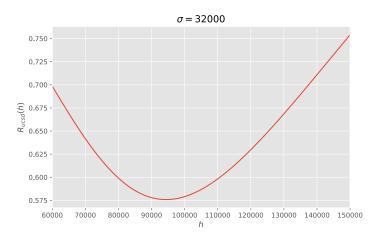












Minimizing R_{ucsd}

- ► To find the best prediction, we find h^* minimizing $R_{ucsd}(h)$.
- $ightharpoonup R_{ucsd}(h)$ is differentiable.
- ► To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

Step 2: Setting to zero and solving

▶ We found:

$$\frac{d}{dh}R_{ucsd}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

We can calculate derivative, but we can't solve for h; we're stuck again.

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these empirical risk functions are various measures of **spread**.
- We came up with a more complicated loss function, L_{ucsd} , that treats all outliers equally.
 - We weren't able to minimize its empirical risk R_{ucsd} by hand.
- Next Time: We'll learn a computational tool to approximate the minimizer of R_{ucsd}.