
Lecture 4 – ERM, Center and Spread

DSC 40A, Spring 2023



Last time: the mean minimizes mean squared
error

▶ Our problem was: find ℎ∗ which minimizes the mean
squared error, 𝑅𝑠𝑞(ℎ) =

1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2.

▶ The answer is: Mean(𝑦1, … , 𝑦𝑛).

▶ The best prediction, in terms of mean squared error,
is the mean.

▶ This answer is always unique!



Comparing the median and mean



Outliers
▶ Consider our original dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

▶ As it stands, the median is 96,000 and the mean is
112,000.

▶ What if we add 300,000 to the largest salary?

90,000 94,000 96,000 120,000 460,000

▶ Now, the median is still 96,000 but the mean is 172,000!

▶ Key Idea: The mean is quite sensitive to outliers.



Outliers
▶ The mean is quite sensitive to outliers.

▶ |𝑦4 − ℎ| is 10 times as big as |𝑦3 − ℎ|.

▶ But (𝑦4 − ℎ)2 is 100 times as big as (𝑦3 − ℎ)2.
▶ This “pulls” ℎ∗ towards 𝑦4.

▶ Squared error can be dominated by outliers.



Example: Data Scientist Salaries

▶ Dataset of 2,016 self-reported data science salaries in the
United States from the 2022 StackOverflow survey.

▶ Median = $86,700.

▶ Mean = $501,425,531.

▶ Min = $20.

▶ Max = $1,000,000,000,000.

▶ 90th Percentile: $700,000.



Example: Data Scientist Salaries



Example: Income Inequality

Chart: Lisa Charlotte Rost, Datawrapper



Example: Income Inequality
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Empirical risk minimization



A general framework

▶ We started with the mean absolute error:

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

▶ Then we introduced the mean squared error:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ They have the same form: both are averages of some
measurement that represents how different ℎ is from the
data.



A general framework

▶ Definition: A loss function 𝐿(ℎ, 𝑦) takes in a prediction ℎ
and a true value (i.e. a “right answer”), 𝑦, and outputs a
number measuring how far ℎ is from 𝑦 (bigger = further).

▶ The absolute loss:

𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|

▶ The squared loss:

𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2



A general framework

▶ Suppose that 𝑦1, … , 𝑦𝑛 are some data points, ℎ is a
prediction, and 𝐿 is a loss function. The empirical risk is
the average loss on the data set:

𝑅𝐿(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

▶ The goal of learning: find ℎ that minimizes 𝑅𝐿. This is
called empirical risk minimization (ERM).



Empirical risk minimization (ERM)

▶ Goal: Given a dataset 𝑦1, 𝑦2, ..., 𝑦𝑛, determine the best
prediction ℎ∗.

▶ Strategy:
1. Choose a loss function, 𝐿(ℎ, 𝑦), that measures how far
any particular prediction ℎ is from the “right answer”
𝑦.

2. Minimize empirical risk (also known as average loss)
over the entire dataset. The value(s) of ℎ that
minimize empirical risk are the resulting “best
predictions”.

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)



Key Idea

▶ The choice of loss function determines the properties of
the result.

▶ Different loss function = different minimizer = different
prediction!
▶ Absolute loss yields the median.

▶ Squared loss yields the mean.

▶ The mean is easier to calculate but is more sensitive
to outliers.

▶ ERM is a “recipe” that can be used to derive many
machine learning algorithms.



Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

𝐿0,1(ℎ, 𝑦) = {
0, if ℎ = 𝑦
1, if ℎ ≠ 𝑦

2. Minimize empirical risk:

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿0,1(ℎ, 𝑦𝑖)

Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are all distinct. Find 𝑅0,1(𝑦1).
a) 0 b) 1𝑛 c) 𝑛−1𝑛 d) 1



Example: 0-1 Loss
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Minimizing empirical risk

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
{0, if ℎ = 𝑦𝑖
1, if ℎ ≠ 𝑦𝑖



Different loss functions lead to different
predictions

Loss Minimizer Outliers Differentiable

𝐿abs median insensitive no

𝐿sq mean sensitive yes

𝐿0,1 mode insensitive no

▶ The optimal predictions are all summary statistics that
measure the center of the data set in different ways.



Summary



Summary

▶ ℎ∗ = Mean(𝑦1, … , 𝑦𝑛) minimizes 𝑅𝑠𝑞(ℎ) =
1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2, i.e.

the mean minimizes mean squared error.

▶ The mean absolute error and the mean squared error fit
into a general framework called empirical risk
minimization.
▶ Pick a loss function. We’ve seen absolute loss,
|𝑦 − ℎ|2, squared loss, (𝑦 − ℎ)2, and 0-1 loss.

▶ Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

▶ By changing the loss function, we change which
prediction is considered the best.



Center and spread



What does it mean?
▶ General form of empirical risk:

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

▶ The input ℎ∗ that minimizes 𝑅(ℎ) is some measure of the
center of the data set.
▶ e.g. median, mean, mode.

▶ The minimum output 𝑅(ℎ∗) represents some measure of
the spread, or variation, in the data set.



Absolute loss
▶ The empirical risk for the absolute loss is

𝑅𝑎𝑏𝑠(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

▶ 𝑅𝑎𝑏𝑠(ℎ) is minimized at ℎ∗ = Median(𝑦1, 𝑦2, … , 𝑦𝑛).

▶ Therefore, the minimum value of 𝑅𝑎𝑏𝑠(ℎ) is

𝑅𝑎𝑏𝑠(ℎ∗) = 𝑅𝑎𝑏𝑠(Median(𝑦1, 𝑦2, … , 𝑦𝑛))

= 1𝑛
𝑛
∑
𝑖=1
|𝑦𝑖 −Median(𝑦1, 𝑦2, … , 𝑦𝑛)|.



Mean absolute deviation from the median
▶ The minimium value of 𝑅𝑎𝑏𝑠(ℎ) is the mean absolute
deviation from the median.

1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 −Median(𝑦1, 𝑦2, … , 𝑦𝑛)|

▶ It measures how far each data point is from the median,
on average.

Discussion Question

For the data set 2, 3, 3, 4, what is the mean absolute
deviation from the median?

a) 0 b) 12 c) 1 d) 2



Mean absolute deviation from the median



Squared loss

▶ The empirical risk for the squared loss is

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ 𝑅sq(ℎ) is minimized at ℎ∗ = Mean(𝑦1, 𝑦2, … , 𝑦𝑛).

▶ Therefore, the minimum value of 𝑅sq(ℎ) is

𝑅sq(ℎ∗) = 𝑅sq(Mean(𝑦1, 𝑦2, … , 𝑦𝑛))

= 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 −Mean(𝑦1, 𝑦2, … , 𝑦𝑛))2.



Variance
▶ The minimium value of 𝑅sq(ℎ) is the mean squared
deviation from the mean, more commonly known as the
variance.

1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 −Mean(𝑦1, 𝑦2, … , 𝑦𝑛))2

▶ It measures the squared distance of each data point from
the mean, on average.

▶ Its square root is called the standard deviation.



Variance



0-1 loss
▶ The empirical risk for the 0-1 loss is

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
{0, if ℎ = 𝑦𝑖
1, if ℎ ≠ 𝑦𝑖

▶ This is the proportion (between 0 and 1) of data points
not equal to ℎ.

▶ 𝑅0,1(ℎ) is minimized at ℎ∗ = Mode(𝑦1, 𝑦2, … , 𝑦𝑛).

▶ Therefore, 𝑅0,1(ℎ∗) is the proportion of data points not
equal to the mode.



A poor way to measure spread

▶ The minimium value of 𝑅0,1(ℎ) is the proportion of data
points not equal to the mode.

▶ A higher value means less of the data is clustered at the
mode.

▶ Just as the mode is a very simplistic way to measure the
center of the data, this is a very crude way to measure
spread.



Summary of center and spread

▶ Different loss functions lead to empirical risk functions
that are minimized at various measures of center.

▶ The minimum values of these risk functions are various
measures of spread.

▶ There are many different ways to measure both center and
spread. These are sometimes called descriptive statistics.



A new loss function



Plotting a loss function

▶ The plot of a loss function tells us how it treats outliers.

▶ Consider 𝑦 to be some fixed value. Plot 𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|:



Plotting a loss function

▶ The plot of a loss function tells us how it treats outliers.

▶ Consider 𝑦 to be some fixed value. Plot 𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2:



Discussion Question

Suppose 𝐿 considers all outliers to be equally bad. What
would it look like far away from 𝑦?

a) flat
b) rapidly decreasing
c) rapidly increasing



A very insensitive loss

▶ We’ll call this loss 𝐿𝑢𝑐𝑠𝑑 because we made it up at UCSD.



Discussion Question

Which of these could be 𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦)?

a) 𝑒−(𝑦−ℎ)2

b) 1 − 𝑒−(𝑦−ℎ)2

c) 1 − (𝑦 − ℎ)2

d) 1 − 𝑒−|𝑦−ℎ|



Adding a scale parameter

▶ Problem: 𝐿𝑢𝑐𝑠𝑑 has a fixed scale. This won’t work for all
datasets.
▶ If we’re predicting temperature, and we’re off by 100
degrees, that’s bad.

▶ If we’re predicting salaries, and we’re off by 100
dollars, that’s pretty good.

▶ What we consider to be an outlier depends on the
scale of the data.

▶ Fix: add a scale parameter, 𝜎:

𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)
2/𝜎2



Scale parameter controls width of bowl



Empirical risk minimization

▶ We have salaries 𝑦1, 𝑦2, ..., 𝑦𝑛.

▶ To find prediction, ERM says to minimize the average loss:

𝑅𝑢𝑐𝑠𝑑(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦𝑖)

= 1𝑛
𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]



Let’s plot 𝑅𝑢𝑐𝑠𝑑
▶ Recall:

𝑅𝑢𝑐𝑠𝑑(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]

▶ Once we have data 𝑦1, 𝑦2, ..., 𝑦𝑛 and a scale 𝜎, we can plot
𝑅𝑢𝑐𝑠𝑑(ℎ).

▶ Let’s try several scales, 𝜎, for the data scientist salary
data.



Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Minimizing 𝑅𝑢𝑐𝑠𝑑
▶ To find the best prediction, we find ℎ∗ minimizing 𝑅𝑢𝑐𝑠𝑑(ℎ).

▶ 𝑅𝑢𝑐𝑠𝑑(ℎ) is differentiable.

▶ To minimize: take derivative, set to zero, solve.



Step 1: Taking the derivative
𝑑𝑅𝑢𝑐𝑠𝑑
𝑑ℎ = 𝑑

𝑑ℎ (
1
𝑛

𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2])



Step 2: Setting to zero and solving

▶ We found:

𝑑
𝑑ℎ𝑅𝑢𝑐𝑠𝑑(ℎ) =

2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)

2/𝜎2

▶ Now we just set to zero and solve for ℎ:

0 = 2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)

2/𝜎2

▶ We can calculate derivative, but we can’t solve for ℎ; we’re
stuck again.



Summary

▶ Different loss functions lead to empirical risk functions
that are minimized at various measures of center.

▶ The minimum values of these empirical risk functions are
various measures of spread.

▶ We came up with a more complicated loss function, 𝐿𝑢𝑐𝑠𝑑 ,
that treats all outliers equally.
▶ We weren’t able to minimize its empirical risk 𝑅𝑢𝑐𝑠𝑑
by hand.

▶ Next Time: We’ll learn a computational tool to
approximate the minimizer of 𝑅𝑢𝑐𝑠𝑑 .


