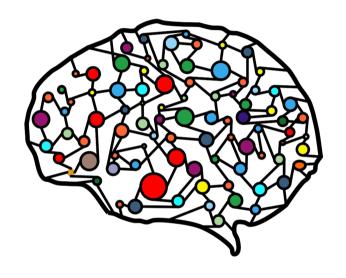
Lecture 5 – Gradient Descent



DSC 40A, Winter 2024

Hi, everyone!

Aobo Li (pronounced obo)

- Assistant Professor with HDSI and Department of Physics
- Undergraduate at UW Seattle, PhD at Boston University, Postdoc at UNC Chapel Hill
- For fun: video game/esports, saxophone, photography

Announcements

- Thanks to Justin Eldridge for covering my lectures
- Podcast will be available starting today
- My office hour will be Tuesday 10am 12pm
- Commencement of Activity
 - Submitted HW1 or Received & replied to my email == Active

Agenda

- Brief recap of Lecture 4.
- Gradient descent fundamentals.

Empirical risk minimization

The recipe

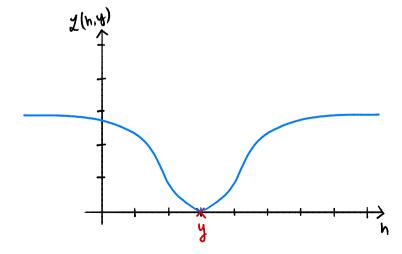
Suppose we're given a dataset, $y_1, y_2, ..., y_n$ and want to determine the best future prediction h^* .

- 1. Choose a loss function L(h, y) that measures how far our prediction h is from the "right answer" y.
 - Absolute loss (L1 Loss), $L_{abs}(h, y) = |y h|$.
 - Squared loss (L2 Loss), $L_{sa}(h, y) = (y h)^2$.
- 2. Find h* by minimizing the average of our chosen loss function over the entire dataset.
 - "Empirical risk" is just another name for average loss.

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y)$$

A very insensitive loss

- Last time, we introduced a new loss function, L_{ucsd}, with the property that it (roughly) penalizes all bad predictions the same.
 - A prediction that is off by 50 has approximately the same loss as a prediction that is of by 500.
 - ▶ The effect: L_{ucsd} is not as sensitive to outliers.



A very insensitive loss

The formula for L_{ucsd} is as follows (no need to memorize):

$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$

► The shape (and formula) come from an upside-down bell curve.

- $ightharpoonup L_{ucsd}$ contains a **scale parameter**, σ .
 - Nothing to do with variance or standard deviation.
 - Accounts for the fact that different datasets have different thresholds for what counts as an outlier.
 - Like a knob that you get to turn the larger σ is, the more sensitive L_{ucsd} is to outliers (and the more smooth R_{ucsd} is).

Minimizing R_{ucsd}

ightharpoonup The corresponding empirical risk, R_{ucsd} , is

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

- $ightharpoonup R_{ucsd}$ is differentiable.
- To minimize: take derivative, set to zero, solve.

ر

Step 1: Taking the derivative

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] - (y_1 - h)^2/\sigma^2 \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \frac{dh}{dh} \left[1 - e^{-(y_i - h)^$$

$$= \frac{1}{h^{2}} \frac{$$

Step 2: Setting to zero and solving

We found:

$$\frac{d}{dh}R_{ucsd}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

We can calculate derivative, but we can't solve for h; we're stuck again.

Gradient descent fundamentals

Gradient is the **blood** of Machine Learning Models

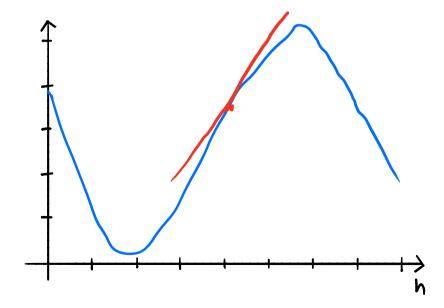
- ► The way your body works: **Heart** constantly pumps **blood** into different **organs**, blood carries oxygen that can power up these organs.
- ► The way to train a ML model: Empirical Risk Minimization constantly pumps gradient into different model parameters, gradient carries informations that can be used to update these parameters.
 - This is true for model as simple as linear regression and for model as complicated as ChatGPT

The general problem

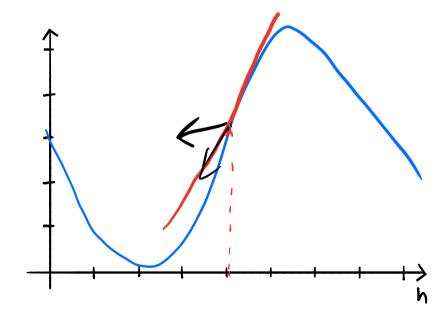
- **Given:** a differentiable function R(h).
- ▶ **Goal:** find the input h^* that minimizes R(h).

Meaning of the derivative

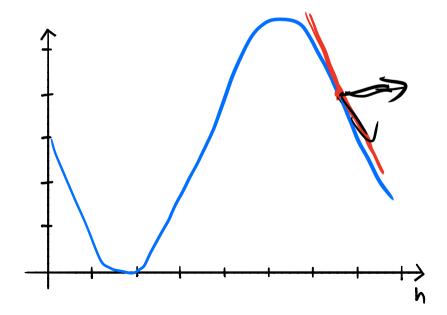
- ► We're trying to minimize a **differentiable** function *R*(*h*). Is calculating the derivative helpful?
- $ightharpoonup \frac{dR}{dh}(h)$ is a function; it gives the slope at h.



- ► If the slope of *R* at *h* is **positive** then moving to the **left** decreases the value of *R*.
- ▶ i.e., we should **decrease** *h*.



- If the slope of *R* at *h* is **negative** then moving to the **right** decreases the value of *R*.
- i.e., we should **increase** *h*.



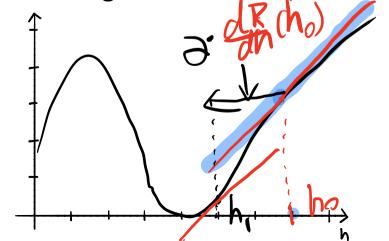
- \triangleright Pick a starting place, h_0 . Where do we go next?
- Slope at h_0 negative? Then increase h_0 .
- Slope at h_0 positive? Then decrease h_0 .

- \triangleright Pick a starting place, h_0 . Where do we go next?
- ▶ Slope at h_0 negative? Then increase h_0 .
- ▶ Slope at h_0 positive? Then decrease h_0 .
- Something like this will work:

$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- Pick α to be a positive number. It is the learning rate, also known as the step size.
- Pick a starting prediction, h_0 .
- On step i, perform update $h_i = h_{i-1} \alpha \cdot \frac{dR}{dh}(h_{i-1})$
- Repeat until convergence (when h doesn't change much).



Gradient Descent

Note: it's called gradient descent because the gradient is the generalization of the derivative for multivariable functions.

Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

$$\frac{dR_{sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Discussion Question

Consider the dataset -4, -2, 2, 4. Pick $h_0 = 4$ and $\alpha = \frac{1}{4}$. Find h₁.

a) -1
b) 0
c) 1
d) 2

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 \frac{dR_{sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Consider the dataset -4, -2, 2, 4. Pick
$$h_0 = 4$$
 and $\alpha = \frac{1}{4}$. Find h_1 .

$$h_1 = h_1 - 1 - 2 + \frac{2}{4h}(h_1 - 1)$$

$$h_1 = h_0 - 2$$
 $\frac{3k}{4} \frac{(h_0)}{(h_0)}$

Summary

- Gradient descent is a general tool used to minimize differentiable functions.
 - ► We will usually use it to minimize empirical risk, but it can minimize other functions, too.
- Gradient descent progressively updates our guess for h* according to the update rule

$$h_i = h_{i-1} - \alpha \cdot \left(\frac{dR}{dh}(h_{i-1})\right).$$

Next Time: We'll demonstrate gradient descent in a Jupyter notebook. We'll learn when this procedure works well and when it doesn't.