Lecture 5 - Gradient Descent

DSC 40A, Winter 2024



Hi, everyone!

Aobo Li (pronounced obo)
Assistant Professor with HDSI and Department of Physics

Undergraduate at UW Seattle, PhD at Boston University,
Postdoc at UNC Chapel Hill

For fun: video game/esports, saxophone, photography



Announcements

Thanks to Justin Eldridge for covering my lectures
Podcast will be available starting today

My office hour will be Tuesday 10am - 12pm
Commencement of Activity

Submitted HW1 or Received & replied to my email ==
Active



Agenda

Brief recap of Lecture 4.

Gradient descent fundamentals.



Empirical risk minimization



The recipe

Suppose we're given a dataset, y,,¥,, .., ¥, and want to
determine the best future prediction h*.

Choose a loss function L(h, y) that measures how far our
prediction h is from the “right answer” y.

Absolute loss (L1 Loss), L, .(h,y) = |y - h].
Squared loss (L2 Loss), Ly, (h,y) = (y - h)>.

Find h* by minimizing the average of our chosen loss
function over the entire dataset.

“Empirical risk” is just another name for average loss.

1 n
Rh) = — > Lh,y)

=1



A very insensitive loss

Last time, we introduced a new loss function, L __,, with
the property that it (roughly) penalizes all bad predictions
the same.

A prediction that is off by 50 has approximately the
same loss as a prediction that is of by 500.

The effect: L, IS not as sensitive to outliers.

1)




A very insensitive loss

The formula for L, is as follows (no need to memorize):

(v_h\2 | ~2
Lucsd(hry) =1 -eW-hrlo

The shape (and formula) come from an up5|de dow
bell curve. job 9e 3

L,..4 CONtains a scale parameter, ‘o./_\//‘ v

ucs
Nothing to do with variance or standard deviation.

Accounts for the fact that different datasets have
different thresholds for what counts as an outlier.

Like a knob that you get to turn - the larger g is, the
more sensitive L, ., IS to outliers (and the more
smooth R, ., is).



Minimizing R __,

The corresponding empirical risk, R .4, IS

n
Rucsd(h) - % Z [1 _ e‘(yi‘h)2/02]
i=1

R,.cq 1S differentiable.

To minimize: take derivative, set to zero, solve.



Step 1: Taking the derivative







Step 2: Setting to zero and solving

We found:

d
e R,.q(h) = o Z(h y)-e ~(h-y;)?/

Now we just set to zero and solve for h:

We can calculate derivative, but we solve for h; we're
stuck again.



Gradient descent fundamentals



Gradient is the blood of Machine Learning
Models

The way your body works: Heart constantly pumps blood
into different organs, blood carries oxygen that can power
up these organs.

The way to train a ML model: Empirical Risk Minimization
constantly pumps gradient into different model
parameters, gradient carries informations that can be
used to update these parameters.

This is true for model as simple as linear regression
and for model as complicated as ChatGPT



The general problem

Given: a differentiable function R(h).

Goal: find the input h* that minimizes R(h).



Meaning of the derivative

We're trying to minimize a differentiable function R(h). Is
calculating the derivative helpful?

%(h) is a function; it gives the slope at h.

dh

S\



Key idea behind gradient descent

If the slope of R at h is positive then moving to the left
decreases the value of R.

l.e., we should decrease h.




Key idea behind gradient descent

If the slope of R at h is negative then moving to the right
decreases the value of R.

i.e., we should increase h.

S\



Key idea behind gradient descent

Pick a starting place, h,. Where do we go next?
Slope at h, negative? Then increase h,,.

Slope at h, positive? Then decrease h,,.



Key idea behind gradient descent

Pick a starting place, h,. Where do we go next?
Slope at h, negative? Then increase h,,.
Slope at h, positive? Then decrease h,,.

Something like this will work:

h,=h ——(ho)
A B=



Gradient Descent

Pick a to be a positive number. It is the learning rate, also
known as the step size.

Pick a starting prediction, h,,.
: dR
On step I, perform update h. =h. ., -a- d_h(hH)

Repeat until convergence (when h doesn’t change much).
dx
3

LN
4




Gradient Descent

def gradient_descent(derivative, h, alpha, tol=1e-12):
"""Minimize using gradient descent.
while True:
_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:
break
= h_next
return h

n”rnn

Note: it's called gradient descent because the gradient is the
generalization of the derivative for multivariable functions.



Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

1 < dRs 2 <
R = 3 20=h? - g2 <D (=)

Discussion Question

Consider the dataset -4,-2,2,4. Pick h, = 4 and a = %
Find h,.

a) -1
b) 0
c) 1
d) 2




Solution

7 =R =422
n dR
R <h>=1Z<y,-—h>2 —2(h) = 2 Z<h V)

Consider the dataset -4,-2,2, 4. Pick h. = 4 and a = 1 . Find h,.

«/l'\‘r\ - QA %()\1 ) 8/
= h, 5\ %(M 7‘

- (4 --9=8]
4\ L = (Y _—L)=b
%—l#‘g ut ZV (’7 4 '(q/—m):l

< o aiad




Summary

Gradient descent is a general tool used to minimize
differentiable functions.

We will usually use it to minimize empirical risk, but
it can minimize other functions, too.

Gradient descent progressively updates our guess for h*
according to the update rule

dR
hi=hiy-a-(Soh ).

Next Time: We'll demonstrate gradient descent in a
Jupyter notebook. We'll learn when this procedure works
well and when it doesn't.



