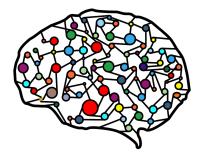
Lecture 6 - Gradient Descent in Action



DSC 40A, Winter 2024

Announcements

- Discussion session today at 5-5:50pm in PCYNH 106
 - (This time only) Discussion deadline extended to Wednesday, 11:59pm
 - (This time only) You will still get full points if you do not come to the in-person session and would rather do it in-person at home
- Homework 2 due Wednesday 11:59pm.
 - HW2 has been created in gradescope
- HW1 Solution was posted last Friday

Agenda

- Brief recap of Lecture 5.
- Gradient descent demo.
- When is gradient descent guaranteed to work?

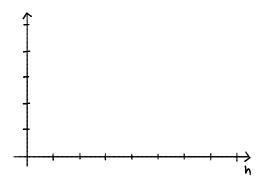
Gradient descent fundamentals

The general problem

- **Given:** a differentiable function R(h).
- ▶ **Goal:** find the input h^* that minimizes R(h).

Key idea behind gradient descent

- ► If the slope of *R* at *h* is **positive** then we'll **decrease** *h*.
- If the slope of *R* at *h* is **negative** then we'll **increase** *h*.

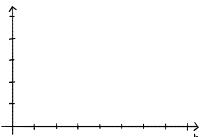


Gradient descent

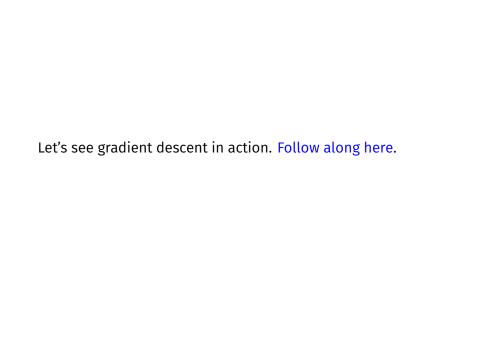
- \triangleright Pick a positive constant, α , for the learning rate.
- Pick a starting prediction, h_0 .
- Repeatedly apply the gradient descent update rule.

$$h_i = h_{i-1} - \alpha \cdot \frac{dR}{dh}(h_{i-1})$$

Repeat until convergence (when h doesn't change much).

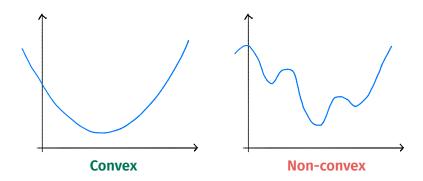


Gradient descent demo



When is gradient descent guaranteed to work?

Convex functions

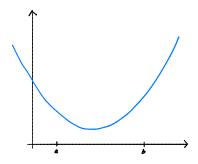


Convexity: Definition

► f is convex if for every a, b in the domain of f, the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.

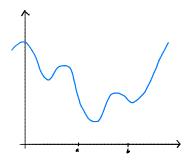


Convexity: Definition

► f is convex if for every a, b in the domain of f, the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.



Convexity: Formal definition

A function $f: \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of a, b and $t \in [0, 1]$:

$$(1-t)f(a)+tf(b)\geq f((1-t)a+tb)$$

This is a formal way of restating the condition from the previous slide.

Discussion Question

Which of these functions is not convex?

a)
$$f(x) = |x|$$

b)
$$f(x) = e^{x}$$

c)
$$f(x) = \sqrt{x-1}$$

c)
$$f(x) = \sqrt{x-1}$$

d) $f(x) = (x-3)^{24}$

Why does convexity matter?

- Convex functions are (relatively) easy to minimize with gradient descent.
- ► **Theorem**: if *R*(*h*) is convex and differentiable then gradient descent converges to a **global minimum** of *R* provided that the step size is small enough.

► Why?

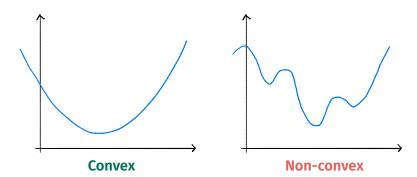
- If a function is convex and has a local minimum, that local minimum must be a global minimum.
- In other words, gradient descent won't get stuck/terminate in local minimums that aren't global minimums.

Nonconvexity and gradient descent

- We say a function is nonconvex if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) hard to minimize.
- Gradient descent can still be useful, but it's not guaranteed to converge to a global minimum.
 - We saw this when trying to minimize $R_{ucsd}(h)$ with a smaller σ .

Second derivative test for convexity

- If f(x) is a function of a single variable and is twice differentiable, then:
- ► f(x) is convex if and only if $\frac{d^2f}{dx^2}(x) \ge 0$ for all x.
- Example: $f(x) = x^4$ is convex.



Convexity of empirical risk

If L(h, y) is a convex function (when y is fixed) then

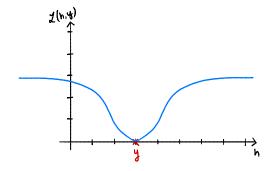
$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

is convex.

- More generally, sums of convex functions are convex.
- What does this mean?
 - If a loss function is convex, then the corresponding empirical risk will also be convex.

Convexity of loss functions

- Is $L_{sq}(h, y) = (y h)^2$ convex? **Yes** or **No**.
- ► Is $L_{abs}(h, y) = |y h|$ convex? **Yes** or **No**.
- ls $L_{ucsd}(h, y)$ convex? **Yes** or **No**.



Convexity of R_{ucsd}

- A function can be convex in a region.
- ▶ If σ is large, $R_{ucsd}(h)$ is convex in a big region around data.
 - A large σ led to a very smooth, parabolic-looking empirical risk function with a single local minimum (which was a global minimum).
- If σ is small, $R_{ucsd}(h)$ is convex in only small regions.
 - ightharpoonup A small σ led to a very bumpy empirical risk function with many local minimums.

Discussion Question

Recall the empirical risk for absolute loss,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Is $R_{abs}(h)$ convex? Is gradient descent guaranteed to find a global minimum, given an appropriate step size?

- a) YES convex, YES guaranteed
- b) YES convex, NOT guaranteed
- c) **NOT** convex, **YES** guaranteed
- d) NOT convex, NOT guaranteed

Summary

Summary

- Gradient descent is a general tool used to minimize differentiable functions.
- Convex functions are (relatively) easy to optimize with gradient descent.
- We like convex loss functions, such as the squared loss and absolute loss, because the corresponding empirical risk functions are also convex.

What's next?

- So far, we've been predicting future values (salary, for instance) without using any information about the individual.
 - ► GPA.
 - Years of experience.
 - Number of LinkedIn connections.
 - Major.
- How do we incorporate this information into our prediction-making process?