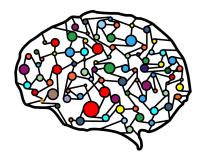
Lecture 7 - Linear Prediction Rules



DSC 40A, Spring 2023

Announcements

- ► Homework 2 is due **today at 11:59pm**.
- Homework 3 will be posted soon.
 - Last homework before Midterm 1.

Agenda

- Recap of convexity.
- Prediction rules.
- Minimizing mean squared error, again.

Recap: convexity

Convexity: Definition

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of a, b and $t \in [0, 1]$:

$$(1-t)f(a)+tf(b)\geq f((1-t)a+tb)$$

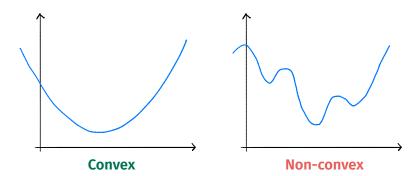
This means that for **every** a, b in the domain of f, the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.

Second derivative test for convexity

- If f(x) is a function of a single variable and is twice differentiable, then:
- ► f(x) is convex if and only if $\frac{d^2f}{dx^2}(x) \ge 0$ for all x.
- Example: $f(x) = x^4$ is convex.



Discussion Question

Suppose we have a function $f(x) = (x - a)^n$, which of the following statement is correct?

- a) f(x) is always convex
- b) f(x) is convex if n is **odd**, non-convex if n is **even**
- c) f(x) is convex if n is **even**, non-convex if n is **odd**
- d) f(x) is always non-convex

Convexity and gradient descent

- ► **Theorem**: if *R*(*h*) is convex and differentiable then gradient descent converges to a **global minimum** of *R* provided that the step size is small enough.
 - If a function is convex and has a local minimum, that local minimum must be a global minimum.
 - In other words, gradient descent won't get stuck/terminate in local minimums that aren't global minimums.
- For nonconvex functions, gradient descent can still be useful, but it's not guaranteed to converge to a global minimum.

Convexity of empirical risk

If L(h, y) is a convex function (when y is fixed) then

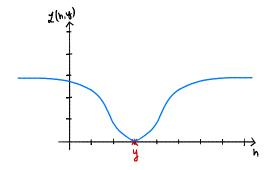
$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

is convex.

- More generally, sums of convex functions are convex.
- What does this mean?
 - If a loss function is convex, then the corresponding empirical risk will also be convex.

Convexity of loss functions

- Is $L_{sq}(h, y) = (y h)^2$ convex? **Yes** or **No**.
- ► Is $L_{abs}(h, y) = |y h|$ convex? **Yes** or **No**.
- ls $L_{ucsd}(h, y)$ convex? **Yes** or **No**.



Convexity of R_{ucsd}

- A function can be convex in a region.
- ▶ If σ is large, $R_{ucsd}(h)$ is convex in a big region around data.
 - A large σ led to a very smooth, parabolic-looking empirical risk function with a single local minimum (which was a global minimum).
- If σ is small, $R_{ucsd}(h)$ is convex in only small regions.
 - ightharpoonup A small σ led to a very bumpy empirical risk function with many local minimums.

Discussion Question

Recall the empirical risk for absolute loss,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Is $R_{abs}(h)$ convex? Is gradient descent guaranteed to find a global minimum, given an appropriate step size?

- a) YES convex, YES guaranteed
- b) YES convex, NOT guaranteed
- c) **NOT** convex, **YES** guaranteed
- d) NOT convex, NOT guaranteed

Prediction rules

How do we predict someone's salary?

After collecting salary data, we...

- 1. Choose a loss function.
- 2. Find the best prediction by minimizing the average loss across the entire data set (empirical risk).
- So far, we've been predicting future salaries without using any information about the individual (e.g. GPA, years of experience, number of LinkedIn connections).
- ► **New focus:** How do we incorporate this information into our prediction-making process?

Features

A **feature** is an attribute – a piece of information.

- Numerical: age, height, years of experience
- Categorical: college, city, education level
- Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame or table.

	YearsExperience	Age	FormalEducation	Salary
0	6.37	28.39	Master's degree (MA, MS, M.Eng., MBA, etc.)	120000.0
1	0.35	25.78	Some college/university study without earning	120000.0
2	4.05	31.04	Bachelor's degree (BA, BS, B.Eng., etc.)	70000.0
3	18.48	38.78	Bachelor's degree (BA, BS, B.Eng., etc.)	185000.0
4	4.95	33.45	Master's degree (MA, MS, M.Eng., MBA, etc.)	125000.0

Variables

- The features, x, that we base our predictions on are called predictor variables.
- The quantity, y, that we're trying to predict based on these features is called the response variable.
- We'll start by predicting salary based on years of experience.

Prediction rules

- We believe that salary is a function of experience.
- In other words, we think that there is a function *H* such that:

salary ≈ H(years of experience)

- H is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

Possible prediction rules

$$H_1$$
(years of experience) = \$50,000 + \$2,000 × (years of experience)
 H_2 (years of experience) = \$60,000 × 1.05^(years of experience)
 H_3 (years of experience) = \$100,000 - \$5,000 × (years of experience)

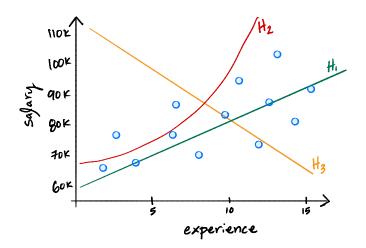
- These are all valid prediction rules.
- Some are better than others.

Comparing predictions

- ► How do we know which prediction rule is best: H_1 , H_2 , H_3 ?
- We gather data from n people. Let x_i be experience, y_i be salary:

See which rule works better on data.

Example

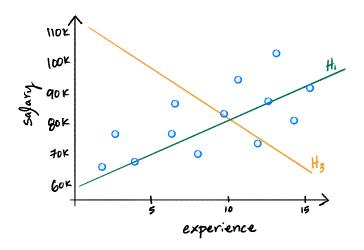


Quantifying the quality of a prediction rule H

- Our prediction for person i's salary is $H(x_i)$.
- As before, we'll use a **loss function** to quantify the quality of our predictions.
 - Absolute loss: $|y_i H(x_i)|$.
 - Squared loss: $(y_i H(x_i))^2$.
- We'll focus on squared loss, since it's differentiable.
- Using squared loss, the **empirical risk** (mean squared error) of the prediction rule *H* is:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

Mean squared error



Finding the best prediction rule

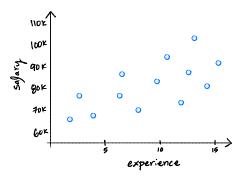
- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
- ▶ That is, H* should be the function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

Discussion Question

Given the data below, is there a prediction rule *H* which has **zero** mean squared error?

a) Yes b) No



Problem

- ► We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
 - Linear: $H(x) = w_0 + w_1 x$.
 - Quadratic: $H(x) = w_0 + w_1 x + w_2 x^2$.
 - Exponential: $H(x) = w_0 e^{w_1 x}$.
 - Constant: $H(x) = w_0$.

Finding the best linear prediction rule

- ▶ **Goal:** out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
 - Linear functions are of the form $H(x) = w_0 + w_1 x$.
 - They are defined by a slope (w_1) and intercept (w_0) .
- ► That is, H* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- ► This problem is called linear regression.
 - Simple linear regression refers to linear regression with a single predictor variable, x.

Minimizing mean squared error for the linear

prediction rule

Minimizing the mean squared error

▶ The MSE is a function R_{sq} of a function H.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

► But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- Now R_{sa} is a function of w_0 and w_1 .
- ▶ We call w_0 and w_1 parameters.
 - Parameters define our prediction rule.

Updated goal

Find the slope w_1^* and intercept w_0^* that minimize the MSE, $R_{sq}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: multivariable calculus.

Recall: the gradient

If f(x, y) is a function of two variables, the gradient of f at the point (x_0, y_0) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

- **Key Fact #1**: The derivative is to the tangent line as the gradient is to the tangent plane.
- Key Fact #2: The gradient points in the direction of the biggest increase.
- Key Fact #3: The gradient is zero at critical points.

Minimizing multivariable functions

- From calculus, to optimize a multivariable differentiable function:
 - Calculate the gradient vector, or vector of partial derivatives.
 - 2. Set the gradient equal to to 0 (that is, the zero vector).
 - 3. Solve the resulting system of equations.

Example

Discussion Question

Find the point at which the function

$$f(x,y) = x^2 + y^2 - 2x - 4y$$

is minimized.

Summary

Summary, next time

- We introduced the linear prediction rule, $H(x) = w_0 + w_1 x$.
- ➤ To determine the best linear prediction rule, we'll use the squared loss and choose the one that minimizes the empirical risk, or mean squared error:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- ► **Next time**: We'll use calculus to minimize the mean squared error and find the best linear prediction rule.
 - Spoiler alert: it's the regression line, as we saw in DSC 10.