Lecture 8 - Simple Linear Regression

DSC 40A, Winter, 2024

Announcements

- Math Warning
- Today's lecture is called simple linear regression, but it contains lots of math
- I'll frequently stops and ask to make sure everyone catch up

Agenda

- Recap of Lecture 7.
- Minimizing mean squared error for the linear prediction rule.
- Connection with correlation.

Recap of Lecture 7

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule $H(x)$ that uses features, i.e. information about individuals, to make predictions.
\Rightarrow We decided to use a linear prediction rule, which is of the form $H(x)=w_{0}+w_{1} x$.
${ } w_{0}$ and w_{1} are called parameters.

Before

Now

Finding the best linear prediction rule

- In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.
- We chose squared loss, $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$, as our loss function.
\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Finding the best linear prediction rule

- Goal: Find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

> Strategy: To minimize $R\left(w_{0}, w_{1}\right)$, compute the gradient (vector of partial derivatives), set it equal to zero, and solve.

Minimizing mean squared error for the linear prediction rule

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{s q}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=
\end{aligned}
$$

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.
\Rightarrow The result becomes w_{1}^{*}, since it is the "best slope".

Solve for w_{0}^{*}
$-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0$

Solve for w_{1}^{*}

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

Least squares solutions

\Rightarrow We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

Least squares solutions

\Rightarrow The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{\star}+w_{1}^{*} x
$$

Example

$$
\begin{array}{llllll}
\hline x_{i} & y_{i} & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)^{2} \\
\hline 3 & 7 & & & & \\
4 & 3 & & & & \\
8 & 2 & & & &
\end{array}
$$

Example

$$
\begin{array}{llllll}
\hline x_{i} & y_{i} & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)^{2} \\
\hline 3 & 7 & & & & \\
4 & 3 & & & & \\
8 & 2 & & & &
\end{array}
$$

Terminology

> x : features.
> y : response variable.
${ }^{-} w_{0}, w_{1}$: parameters.
${ }^{-} w_{0}^{*}, w_{1}^{*}$: optimal parameters.

- Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".
$\Rightarrow R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$: mean squared error, empirical risk.

Discussion Question

Consider a dataset with just two points, $(2,5)$ and $(4,15)$. Suppose we want to fit a linear prediction rule to this dataset by minimizing mean squared error. What are the values of w_{0}^{*} and w_{1}^{*} that minimize mean squared error?
a) $w_{0}^{*}=2, w_{1}^{*}=5$
b) $w_{0}^{*}=3, w_{1}^{*}=10$
c) $w_{0}^{*}=-2, w_{1}^{*}=5$
d) $w_{0}^{*}=-5, w_{1}^{*}=5$

Connection with correlation

Patterns in scatter plots

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between - 1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

> The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
\Rightarrow Let σ_{x} be the standard deviation of the x_{i} 's, and \bar{x} be the mean of the x_{i} 's.
x_{i} in standard units is $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.

- The correlation coefficient is

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

Another way to express w_{1}^{*}

- It turns out that w_{1}^{*}, the optimal slope for the linear prediction rule, can be written in terms of r !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that r is related to w_{1}^{*}, since r is a measure of linear association.
- Concise way of writing w_{0}^{*} and w_{1}^{*} :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$

Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- σ_{y} and σ_{x} are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_{y} increases and so does the slope.
- As the x values get more spread out, σ_{x} increases and the slope decreases.

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

What is $H^{*}(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a $\$ 5,000$ raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases
d) slope stays same, intercept stays same

