
Lecture 8 – Simple Linear Regression

DSC 40A, Winter, 2024



Announcements
▶ Math Warning

▶ Today’s lecture is called simple linear regression, but
it contains lots of math

▶ I’ll frequently stops and ask to make sure everyone
catch up



Agenda

▶ Recap of Lecture 7.

▶ Minimizing mean squared error for the linear prediction
rule.

▶ Connection with correlation.



Recap of Lecture 7



Linear prediction rules
▶ New: Instead of predicting the same future value (e.g.
salary) ℎ for everyone, we will now use a prediction rule
𝐻(𝑥) that uses features, i.e. information about individuals,
to make predictions.

▶ We decided to use a linear prediction rule, which is of the
form 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.
▶ 𝑤0 and 𝑤1 are called parameters.

Before Now



Finding the best linear prediction rule
▶ In order to find the best linear prediction rule, we need to
pick a loss function and minimize the corresponding
empirical risk.
▶ We chose squared loss, (𝑦𝑖 − 𝐻(𝑥𝑖))

2, as our loss
function.

▶ The MSE is a function 𝑅sq of a function 𝐻.

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ But since 𝐻 is linear, we know 𝐻(𝑥𝑖) = 𝑤0 + 𝑤1𝑥𝑖.

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2



Finding the best linear prediction rule

▶ Goal: Find the slope 𝑤∗1 and intercept 𝑤∗0 that minimize
the MSE, 𝑅sq(𝑤0, 𝑤1):

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ Strategy: To minimize 𝑅(𝑤0, 𝑤1), compute the gradient
(vector of partial derivatives), set it equal to zero, and
solve.



Minimizing mean squared error for the linear
prediction rule



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

Discussion Question

Choose the expression that equals
𝜕𝑅sq
𝜕𝑤0

.

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

b) −1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

c) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖

d) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤0

=



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤1

=



Strategy

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0 − 2𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

1. Solve for 𝑤0 in first equation.
▶ The result becomes 𝑤∗0, since it is the “best intercept”.

2. Plug 𝑤∗0 into second equation, solve for 𝑤1.
▶ The result becomes 𝑤∗1, since it is the “best slope”.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0



Least squares solutions

▶ We’ve found that the values 𝑤∗0 and 𝑤∗1 that minimize the
function 𝑅𝑠𝑞(𝑤0, 𝑤1) =

1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2 are

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦̄)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)𝑥𝑖

𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄

where

𝑥̄ = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖 𝑦̄ = 1𝑛

𝑛
∑
𝑖=1
𝑦𝑖

▶ Let’s re-write the slope 𝑤∗1 to be a bit more symmetric.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦̄) = 0

Proof:



Equivalent formula for w∗1
Claim

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦̄)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)𝑥𝑖

=

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

Proof:



Least squares solutions

▶ The least squares solutions for the slope 𝑤∗1 and intercept
𝑤∗0 are:

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

𝑤∗0 = 𝑦̄ − 𝑤1𝑥̄

▶ We also say that 𝑤∗0 and 𝑤∗1 are optimal parameters.

▶ To make predictions about the future, we use the
prediction rule

𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥



Example
𝑥̄ =

𝑦̄ =

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

=

𝑤∗0 = 𝑦̄ − 𝑤1𝑥̄ =

𝑥𝑖 𝑦𝑖 (𝑥𝑖 − 𝑥̄) (𝑦𝑖 − 𝑦̄) (𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄) (𝑥𝑖 − 𝑥̄)2

3 7
4 3
8 2



Example
𝑥̄ =

𝑦̄ =

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

=

𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄ =

𝑥𝑖 𝑦𝑖 (𝑥𝑖 − 𝑥̄) (𝑦𝑖 − 𝑦̄) (𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄) (𝑥𝑖 − 𝑥̄)2

3 7
4 3
8 2



Terminology

▶ 𝑥: features.

▶ 𝑦: response variable.

▶ 𝑤0, 𝑤1: parameters.

▶ 𝑤∗0, 𝑤∗1: optimal parameters.
▶ Optimal because they minimize mean squared error.

▶ The process of finding the optimal parameters for a given
prediction rule and dataset is called “fitting to the data”.

▶ 𝑅𝑠𝑞(𝑤0, 𝑤1) =
1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2: mean squared error,
empirical risk.



Discussion Question

Consider a dataset with just two points, (2, 5) and (4, 15).
Suppose we want to fit a linear prediction rule to this
dataset by minimizing mean squared error. What are
the values of 𝑤∗0 and 𝑤∗1 that minimize mean squared
error?

a) 𝑤∗0 = 2, 𝑤∗1 = 5
b) 𝑤∗0 = 3, 𝑤∗1 = 10
c) 𝑤∗0 = −2, 𝑤∗1 = 5
d) 𝑤∗0 = −5, 𝑤∗1 = 5



Connection with correlation



Patterns in scatter plots



Correlation coefficient

▶ In DSC 10, you were introduced to the idea of correlation.
▶ It is a measure of the strength of the linear
association of two variables, 𝑥 and 𝑦.

▶ Intuitively, it measures how tightly clustered a scatter
plot is around a straight line.

▶ It ranges between -1 and 1.



Patterns in scatter plots



Definition of correlation coefficient

▶ The correlation coefficient, 𝑟, is defined as the average of
the product of 𝑥 and 𝑦, when both are in standard units.
▶ Let 𝜎𝑥 be the standard deviation of the 𝑥𝑖’s, and 𝑥̄ be
the mean of the 𝑥𝑖’s.

▶ 𝑥𝑖 in standard units is
𝑥𝑖 − 𝑥̄
𝜎𝑥

.

▶ The correlation coefficient is

𝑟 = 1𝑛
𝑛
∑
𝑖=1
(
𝑥𝑖 − 𝑥̄
𝜎𝑥

) (
𝑦𝑖 − 𝑦̄
𝜎𝑦

)



Another way to express 𝑤∗1
▶ It turns out that 𝑤∗1, the optimal slope for the linear
prediction rule, can be written in terms of 𝑟!

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

= 𝑟
𝜎𝑦
𝜎𝑥

▶ It’s not surprising that 𝑟 is related to 𝑤∗1, since 𝑟 is a
measure of linear association.

▶ Concise way of writing 𝑤∗0 and 𝑤∗1:

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄



Proof that 𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥



Interpreting the slope

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

▶ 𝜎𝑦 and 𝜎𝑥 are always non-negative. As a result, the sign of
the slope is determined by the sign of 𝑟.

▶ As the 𝑦 values get more spread out, 𝜎𝑦 increases and so
does the slope.

▶ As the 𝑥 values get more spread out, 𝜎𝑥 increases and the
slope decreases.



Interpreting the intercept

𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄

▶ What is 𝐻∗(𝑥̄)?



Discussion Question

We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. Which
of these happens?

a) slope increases, intercept increases

b) slope decreases, intercept increases

c) slope stays same, intercept increases

d) slope stays same, intercept stays same


