Lecture 9 - Regression in Action and Linear Algebra Review

DSC 40A, Winter 2024

Announcements

- Homework 3 is due Wed at 11:59pm.
- Come to office hours. See dsc40a.com/calendar for the schedule.
- Discusssion session today
- We modify the scope of discussion session/groupwork so that it aligns with the course better.

Agenda

- Recap of Lecture 8.
- Connection with correlation.
- Interpretation of formulas.
- Regression demo.
- Linear algebra review.

Recap of Lecture 8

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.
\Rightarrow The result becomes w_{1}^{*}, since it is the "best slope".

Solve for w_{0}^{*}
$-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0$

Solve for w_{1}^{*}

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

Least squares solutions

\Rightarrow We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

Least squares solutions

\Rightarrow The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{*}+w_{1}^{*} x
$$

Example

$$
\begin{array}{llllll}
\hline x_{i} & y_{i} & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)^{2} \\
\hline 3 & 7 & & & & \\
4 & 3 & & & & \\
8 & 2 & & & &
\end{array}
$$

Connection with correlation

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between - 1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

> The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
\Rightarrow Let σ_{x} be the standard deviation of the x_{i} 's, and \bar{x} be the mean of the x_{i} 's.
x_{i} in standard units is $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.

- The correlation coefficient is

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

Another way to express w_{1}^{*}

- It turns out that w_{1}^{*}, the optimal slope for the linear prediction rule, can be written in terms of r !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that r is related to w_{1}^{*}, since r is a measure of linear association.
- Concise way of writing w_{0}^{*} and w_{1}^{*} :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$

Interpretation of formulas

Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- σ_{y} and σ_{x} are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_{y} increases and so does the slope.
- As the x values get more spread out, σ_{x} increases and the slope decreases.

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

What is $H^{*}(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a $\$ 5,000$ raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases
d) slope stays same, intercept stays same

Regression demo

Let's see regression in action. Follow along here.

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
- use multiple features.
- are non-linear.
- Before we dive in, let's review.

Matrices

- An $m \times n$ matrix is a table of numbers with m rows and n columns.
- We use upper-case letters for matrices.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

- A^{T} denotes the transpose of A :

$$
A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Matrix addition and scalar multiplication

- We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{ccc}
7 & 8 & 9 \\
-1 & -2 & -3
\end{array}\right]=\left[\begin{array}{ccc}
8 & 10 & 12 \\
3 & 3 & 3
\end{array}\right]
$$

- Scalar multiplication occurs elementwise, too:

$$
2 \cdot\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

Matrix-matrix multiplication

- We can multiply two matrices A and B only if \# columns in $A=\#$ rows in B.
\Rightarrow If A is $m \times n$ and B is $n \times p$, the result is $m \times p$. \Rightarrow This is very useful.
> The ij entry of the product is:

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Some matrix properties

- Multiplication is Distributive:

$$
A(B+C)=A B+A C
$$

- Multiplication is Associative:

$$
(A B) C=A(B C)
$$

- Multiplication is not commutative:

$$
A B \neq B A
$$

- Transpose of sum:

$$
(A+B)^{T}=A^{T}+B^{T}
$$

- Transpose of product:

$$
(A B)^{T}=B^{T} A^{T}
$$

Vectors

- An vector in \mathbb{R}^{n} is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$
\vec{v}=\left[\begin{array}{c}
2 \\
1 \\
5 \\
-3
\end{array}\right]
$$

- Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

\Rightarrow A vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)^{T}$ is an arrow to the point $\left(v_{1}, \ldots, v_{n}\right)$ from the origin.

The length, or norm, of \vec{v} is $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$.

Dot products

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is denoted by:

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}
$$

- Definition:

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

The result is a scalar!

Discussion Question

Which of these is another expression for the length of \vec{u} ?
a) $\vec{u} \cdot \vec{u}$
b) $\sqrt{\vec{u}^{2}}$
c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \vec{u}^{2}

Properties of the dot product

- Commutative:

$$
\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{T} \vec{u}
$$

- Distributive:

$$
\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}
$$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=a_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+a_{2}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

- Another view: a dot product with the rows.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^{n}, what are the dimensions of the product $\vec{v}^{\top} A^{\top} A \vec{v}$?
a) $m \times n$ (matrix)
b) $n \times 1$ (vector)
c) 1×1 (scalar)
d) The product is undefined.

Summary

Summary, next time

- We can re-write the optimal parameters for the regression line

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

- We can then make predictions using $H^{*}(x)=w_{0}^{\star}+w_{1}^{*} x$.
- We will need linear algebra in order to generalize regression to work with multiple features.
- Next time: Continue linear algebra review. Formulate linear regression in terms of linear algebra.

