
Lecture 9 – Regression in Action and Linear
Algebra Review

DSC 40A, Winter 2024



Announcements
▶ Homework 3 is due Wed at 11:59pm.

▶ Come to office hours. See dsc40a.com/calendar for
the schedule.

▶ Discusssion session today
▶ We modify the scope of discussion
session/groupwork so that it aligns with the course
better.

dsc40a.com/calendar


Agenda

▶ Recap of Lecture 8.

▶ Connection with correlation.

▶ Interpretation of formulas.

▶ Regression demo.

▶ Linear algebra review.



Recap of Lecture 8



Strategy

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0 − 2𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

1. Solve for 𝑤0 in first equation.
▶ The result becomes 𝑤∗0, since it is the “best intercept”.

2. Plug 𝑤∗0 into second equation, solve for 𝑤1.
▶ The result becomes 𝑤∗1, since it is the “best slope”.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0



Least squares solutions

▶ We’ve found that the values 𝑤∗0 and 𝑤∗1 that minimize the
function 𝑅𝑠𝑞(𝑤0, 𝑤1) =

1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2 are

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)𝑥𝑖

𝑤∗0 = �̄� − 𝑤∗1�̄�

where

�̄� = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖 �̄� = 1𝑛

𝑛
∑
𝑖=1
𝑦𝑖

▶ Let’s re-write the slope 𝑤∗1 to be a bit more symmetric.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�) = 0

Proof:



Equivalent formula for w∗1
Claim

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)𝑥𝑖

=

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

Proof:



Least squares solutions

▶ The least squares solutions for the slope 𝑤∗1 and intercept
𝑤∗0 are:

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

𝑤∗0 = �̄� − 𝑤1�̄�

▶ We also say that 𝑤∗0 and 𝑤∗1 are optimal parameters.

▶ To make predictions about the future, we use the
prediction rule

𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥



Example
�̄� =

�̄� =

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

=

𝑤∗0 = �̄� − 𝑤1�̄� =

𝑥𝑖 𝑦𝑖 (𝑥𝑖 − �̄�) (𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)2

3 7
4 3
8 2



Connection with correlation



Correlation coefficient

▶ In DSC 10, you were introduced to the idea of correlation.
▶ It is a measure of the strength of the linear
association of two variables, 𝑥 and 𝑦.

▶ Intuitively, it measures how tightly clustered a scatter
plot is around a straight line.

▶ It ranges between -1 and 1.



Patterns in scatter plots



Definition of correlation coefficient

▶ The correlation coefficient, 𝑟, is defined as the average of
the product of 𝑥 and 𝑦, when both are in standard units.
▶ Let 𝜎𝑥 be the standard deviation of the 𝑥𝑖’s, and �̄� be
the mean of the 𝑥𝑖’s.

▶ 𝑥𝑖 in standard units is
𝑥𝑖 − �̄�
𝜎𝑥

.

▶ The correlation coefficient is

𝑟 = 1𝑛
𝑛
∑
𝑖=1
(
𝑥𝑖 − �̄�
𝜎𝑥

) (
𝑦𝑖 − �̄�
𝜎𝑦

)



Another way to express 𝑤∗1
▶ It turns out that 𝑤∗1, the optimal slope for the linear
prediction rule, can be written in terms of 𝑟!

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

= 𝑟
𝜎𝑦
𝜎𝑥

▶ It’s not surprising that 𝑟 is related to 𝑤∗1, since 𝑟 is a
measure of linear association.

▶ Concise way of writing 𝑤∗0 and 𝑤∗1:

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = �̄� − 𝑤∗1�̄�



Proof that 𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥



Interpretation of formulas



Interpreting the slope

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

▶ 𝜎𝑦 and 𝜎𝑥 are always non-negative. As a result, the sign of
the slope is determined by the sign of 𝑟.

▶ As the 𝑦 values get more spread out, 𝜎𝑦 increases and so
does the slope.

▶ As the 𝑥 values get more spread out, 𝜎𝑥 increases and the
slope decreases.



Interpreting the intercept

𝑤∗0 = �̄� − 𝑤∗1�̄�

▶ What is 𝐻∗(�̄�)?



Discussion Question

We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. Which
of these happens?

a) slope increases, intercept increases

b) slope decreases, intercept increases

c) slope stays same, intercept increases

d) slope stays same, intercept stays same



Regression demo



Let’s see regression in action. Follow along here.

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec09/lec09.ipynb


Linear algebra review



Wait... why do we need linear algebra?

▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).

▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that
▶ use multiple features.

▶ are non-linear.

▶ Before we dive in, let’s review.



Matrices
▶ An 𝑚 × 𝑛 matrix is a table of numbers with 𝑚 rows and 𝑛
columns.

▶ We use upper-case letters for matrices.

𝐴 = [1 2 3
4 5 6]

▶ 𝐴𝑇 denotes the transpose of 𝐴:

𝐴𝑇 = [
1 4
2 5
3 6

]



Matrix addition and scalar multiplication

▶ We can add two matrices only if they are the same size.

▶ Addition occurs elementwise:

[1 2 3
4 5 6] + [

7 8 9
−1 −2 −3] = [

8 10 12
3 3 3 ]

▶ Scalar multiplication occurs elementwise, too:

2 ⋅ [1 2 3
4 5 6] = [

2 4 6
8 10 12]



Matrix-matrix multiplication

▶ We can multiply two matrices 𝐴 and 𝐵 only if

# columns in 𝐴 = # rows in 𝐵.

▶ If 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝, the result is 𝑚 × 𝑝.
▶ This is very useful.

▶ The 𝑖𝑗 entry of the product is:

(𝐴𝐵)𝑖𝑗 =
𝑛
∑
𝑘=1

𝐴𝑖𝑘𝐵𝑘𝑗



Some matrix properties
▶ Multiplication is Distributive:

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶
▶ Multiplication is Associative:

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)
▶ Multiplication is not commutative:

𝐴𝐵 ≠ 𝐵𝐴
▶ Transpose of sum:

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

▶ Transpose of product:

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇



Vectors
▶ An vector in ℝ𝑛 is an 𝑛 × 1 matrix.

▶ We use lower-case letters for vectors.

⃗𝑣 = [
2
1
5
−3
]

▶ Vector addition and scalar multiplication occur
elementwise.



Geometric meaning of vectors

▶ A vector ⃗𝑣 = (𝑣1, … , 𝑣𝑛)𝑇 is an arrow to the point (𝑣1, … , 𝑣𝑛)
from the origin.

▶ The length, or norm, of ⃗𝑣 is ‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛 .



Dot products

▶ The dot product of two vectors �⃗� and ⃗𝑣 in ℝ𝑛 is denoted
by:

�⃗� ⋅ ⃗𝑣 = �⃗�𝑇 ⃗𝑣

▶ Definition:

�⃗� ⋅ ⃗𝑣 =
𝑛
∑
𝑖=1
𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛

▶ The result is a scalar!



Discussion Question

Which of these is another expression for the length of �⃗�?

a) �⃗� ⋅ �⃗�
b) √�⃗�2
c) √�⃗� ⋅ �⃗�
d) �⃗�2



Properties of the dot product

▶ Commutative:

�⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇 �⃗�

▶ Distributive:
�⃗� ⋅ ( ⃗𝑣 + �⃗�) = �⃗� ⋅ ⃗𝑣 + �⃗� ⋅ �⃗�



Matrix-vector multiplication

▶ Special case of matrix-matrix multiplication.

▶ Result is always a vector with same number of rows as the
matrix.

▶ One view: a “mixture” of the columns.

[1 2 1
3 4 5] [

𝑎1
𝑎2
𝑎3
] = 𝑎1 [

1
3] + 𝑎2 [

2
4] + 𝑎3 [

1
5]

▶ Another view: a dot product with the rows.



Discussion Question

If 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑣 is a vector in ℝ𝑛, what are
the dimensions of the product ⃗𝑣𝑇𝐴𝑇𝐴 ⃗𝑣?

a) 𝑚 × 𝑛 (matrix)
b) 𝑛 × 1 (vector)
c) 1 × 1 (scalar)
d) The product is undefined.



Summary



Summary, next time

▶ We can re-write the optimal parameters for the regression
line

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = �̄� − 𝑤∗1�̄�

▶ We can then make predictions using 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥.

▶ We will need linear algebra in order to generalize
regression to work with multiple features.

▶ Next time: Continue linear algebra review. Formulate
linear regression in terms of linear algebra.


