Lecture 9 – Regression in Action and Linear Algebra Review

DSC 40A, Winter 2024

Announcements

- Homework 3 is due **Wed at 11:59pm**.
 - Come to office hours. See dsc40a.com/calendar for the schedule.
- Discussion session today
 - We modify the scope of discussion session/groupwork so that it aligns with the course better.

Agenda

- Recap of Lecture 8.
- Connection with correlation.
- Interpretation of formulas.
- Regression demo.
- Linear algebra review.

Recap of Lecture 8

Strategy

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

1. Solve for w_0 in first equation.

• The result becomes w_0^* , since it is the "best intercept".

2. Plug w_0^* into second equation, solve for w_1 .

• The result becomes w_1^* , since it is the "best slope".

Solve for w_0^*

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0$$

Solve for w_1^*

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0$$

Least squares solutions

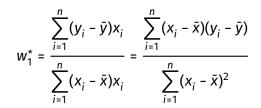
► We've found that the values w_0^* and w_1^* that minimize the function $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$ are

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

• Let's re-write the slope w_1^* to be a bit more symmetric.

Key fact


The sum of deviations from the mean for any dataset is 0.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

Proof:

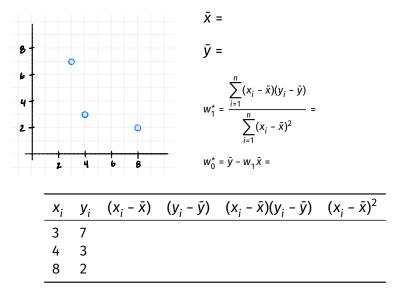
Equivalent formula for w_1^*

Claim

Proof:

Least squares solutions

The least squares solutions for the slope w₁^{*} and intercept w₀^{*} are:

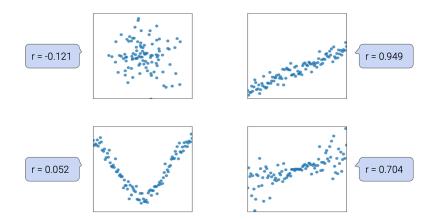

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1 \bar{x}$$

• We also say that w_0^* and w_1^* are **optimal parameters**.

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

Example



Connection with correlation

Correlation coefficient

- ▶ In DSC 10, you were introduced to the idea of correlation.
 - It is a measure of the strength of the linear association of two variables, x and y.
 - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
 - It ranges between -1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
 - Let σ_x be the standard deviation of the x_i 's, and \bar{x} be the mean of the x_i 's.

•
$$x_i$$
 in standard units is $\frac{x_i - \bar{x}}{\sigma_x}$.

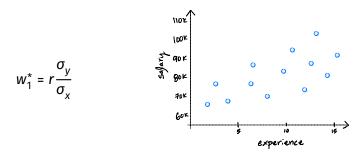
The correlation coefficient is

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

Another way to express W_1^*

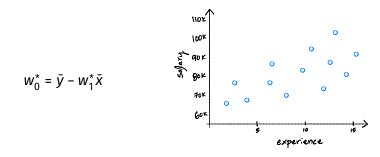
It turns out that w₁^{*}, the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r\frac{\sigma_{y}}{\sigma_{x}}$$


- It's not surprising that r is related to w₁^{*}, since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

Proof that
$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$


Interpretation of formulas

Interpreting the slope

- σ_y and σ_x are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_y increases and so does the slope.
- As the x values get more spread out, σ_x increases and the slope decreases.

Interpreting the intercept

• What is $H^*(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

- a) slope increases, intercept increases
- b) slope decreases, intercept increases
- c) slope stays same, intercept increases
- d) slope stays same, intercept stays same

Regression demo

Let's see regression in action. Follow along here.

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
 use multiple features.

▶ are non-linear.

Before we dive in, let's review.

Matrices

- An m × n matrix is a table of numbers with m rows and n columns.
- ▶ We use upper-case letters for matrices.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

► A^T denotes the transpose of A:

$$A^{\mathsf{T}} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Matrix addition and scalar multiplication

- We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{bmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

Matrix-matrix multiplication

We can multiply two matrices A and B only if

columns in A = # rows in B.

- If A is m × n and B is n × p, the result is m × p.
 This is very useful.
- The *ij* entry of the product is:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Some matrix properties

Multiplication is Distributive:

A(B+C)=AB+AC

Multiplication is Associative:

(AB)C = A(BC)

Multiplication is not commutative:

AB ≠ BA

Transpose of sum:

$$(A+B)^T = A^T + B^T$$

Transpose of product:

 $(AB)^T = B^T A^T$

Vectors

- An vector in \mathbb{R}^n is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$\vec{v} = \begin{bmatrix} 2\\1\\5\\-3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v} = (v_1, ..., v_n)^T$ is an arrow to the point $(v_1, ..., v_n)$ from the origin.

► The length, or norm, of \vec{v} is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$.

Dot products

▶ The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is denoted by:

 $\vec{u}\cdot\vec{v}=\vec{u}^T\vec{v}$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The result is a scalar!

Discussion Question

Which of these is another expression for the length of \vec{u} ?

a)
$$\vec{u} \cdot \vec{u}$$

b) $\sqrt{\vec{u}^2}$
c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \vec{u}^2

Properties of the dot product

Commutative:

$$\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}=\vec{u}^T\vec{v}=\vec{v}^T\vec{u}$$

Distributive:

 $\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.

One view: a "mixture" of the columns.

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Another view: a dot product with the rows.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^n , what are the dimensions of the product $\vec{v}^T A^T A \vec{v}$?

- a) $m \times n$ (matrix)
- b) *n* × 1 (vector)
- c) 1 × 1 (scalar)
- d) The product is undefined.

Summary

Summary, next time

We can re-write the optimal parameters for the regression line

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

- We can then make predictions using $H^*(x) = w_0^* + w_1^*x$.
- We will need linear algebra in order to generalize regression to work with multiple features.
- Next time: Continue linear algebra review. Formulate linear regression in terms of linear algebra.