## Lecture 10 – Regression via Linear Algebra



#### **Announcements**

- Homework 3 is due today at 11:59pm.
  - Last homework before Midterm 1
  - Please come to office hours!
- Midterm 1 on Friday, Feb. 9th
  - A cheat sheet will be provided, no calculator
  - Topics cover up to and include lecture 12
  - Problem will be similar to those in HW and mock exams
  - Review session in next Monday's discussion

### **Agenda**

- Finish linear algebra review.
- Formulate mean squared error in terms of linear algebra.
- Minimize mean squared error using linear algebra.

# Linear algebra review

### **Vectors**

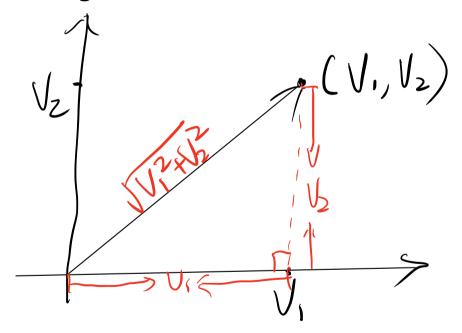
- ightharpoonup An vector in  $\mathbb{R}^n$  is an  $n \times 1$  matrix.
- We use lower-case letters for vectors.

$$\overrightarrow{V} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ -3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

### **Geometric meaning of vectors**

A vector  $\vec{v} = (v_1, ..., v_n)^T$  is an arrow to the point  $(v_1, ..., v_n)$  from the origin.



► The **length**, or **norm**, of  $\vec{v}$  is  $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$ .

### **Dot products**

The **dot product** of two vectors  $\vec{u}$  and  $\vec{v}$  in  $\mathbb{R}^n$  is denoted by:

$$\vec{J} \cdot \vec{\mathcal{R}} = \vec{u} \cdot \vec{v} = \vec{u}^{\mathsf{T}} \vec{v} = \vec{V} \cdot \vec{\mathcal{R}}$$

**Definition:** 

n:
$$\vec{U} \cdot \vec{V} = \vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \vec{V} \cdot \vec{U}$$

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The result is a **scalar**!

(14h)(Nx1) ->(1x1) Scalar

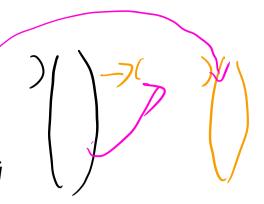
# **Properties of the dot product**

Commutative:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^{\mathsf{T}} \vec{v} = \vec{v}^{\mathsf{T}} \vec{u}$$

Distributive:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$



### **Matrix-vector multiplication**

- Special case of matrix-ince.

  The result is always a vector with the same number of rows as the matrix.  $\begin{bmatrix}
  1 & 2 & 1 \\
  3 & 4 & 5
  \end{bmatrix}$   $\begin{bmatrix}
  1 & 2 & 1 \\
  1 & 2 & 1
  \end{bmatrix}$   $\begin{bmatrix}
  2 & 1 & 1 & 2 \\
  1 & 1 & 2
  \end{bmatrix}$   $\begin{bmatrix}
  3 & 1 & 1 & 2 \\
  1 & 1 & 2
  \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Another view: a dot product with the rows.

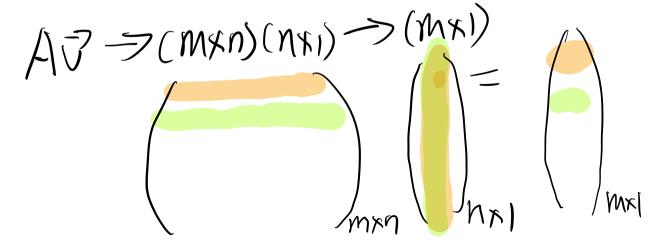
#### **Discussion Question**

If A is an  $m \times n$  matrix and  $\vec{v}$  is a vector in  $\mathbb{R}^n$ , what are the dimensions of the product  $\vec{v}^T A^T A \vec{v}$ ?

- a)  $m \times n$  (matrix)
- b)  $n \times 1$  (vector)
- c) 1 × 1 (scalar)
- d) The product is undefined.

### **Matrices and functions**

- Suppose A is an  $m \times n$  matrix and  $\vec{x}$  is a vector in  $\mathbb{R}^n$ .
- Then, the function  $f(\vec{x}) = Ax$  is a linear function that maps elements in  $\mathbb{R}^n$  to elements in  $\mathbb{R}^m$ .
  - ► The input to *f* is a vector, and so is the output.
- ► **Key idea:** matrix-vector multiplication can be thought of as applying a linear function to a vector.



# Mean squared error, revisited

### Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
  - If the intermediate steps get confusing, think back to this overarching goal.
- ► Thinking about linear regression in terms of **linear** algebra will allow us to find prediction rules that
  - use multiple features.
  - are non-linear.
- Let's start by expressing  $R_{sq}$  in terms of matrices and vectors.

### Regression and linear algebra

We chose the parameters for our prediction rule

$$H(x) = W_0 + W_1 X$$

by finding the  $w_0^*$  and  $w_1^*$  that minimized mean squared error:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2.$$

This is kind of like the formula for the length of a vector:

$$\|\vec{\mathbf{v}}\| = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_n^2}$$

## Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector  $\vec{y} \in \mathbb{R}^n$  with components  $y_i$ . This is the vector of observed/"actual" values.
- The **hypothesis vector** is the vector  $\vec{h} \in \mathbb{R}^n$  with components  $H(x_i)$ . This is the vector of predicted values.
- The error vector is the vector  $\vec{e} \in \mathbb{R}^n$  with components  $e_i = y_i H(x_i)$ . This is the vector of (signed) errors.

## **Example**

Consider 
$$H(x) = \frac{1}{2}x + 2$$
.

$$\vec{y} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix}$$

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (Q_i)^2 = \frac{1}{n} \sum_{i=$$

### Regression and linear algebra

- The observation vector is the vector  $\vec{y} \in \mathbb{R}^n$  with components  $y_i$ . This is the vector of observed/"actual" values.
- The **hypothesis vector** is the vector  $\vec{h} \in \mathbb{R}^n$  with components  $H(x_i)$ . This is the vector of predicted values.
- The error vector is the vector  $\vec{e} \in \mathbb{R}^n$  with components  $e_i = y_i H(x_i)$ . This is the vector of (signed) errors.
- We can rewrite the mean squared error as:

$$R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \frac{1}{n} ||\vec{e}||^2 = \frac{1}{n} ||\vec{y} - \vec{h}||^2.$$

### The hypothesis vector

- ► The hypothesis vector is the vector  $\vec{h} \in \mathbb{R}^n$  with components  $H(x_i)$ . This is the vector of predicted values.
- For the linear prediction rule  $H(x) = w_0 + w_1 x$ , the hypothesis vector  $\vec{h}$  can be written

$$\vec{h} = \begin{bmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_n) \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ x_n \end{bmatrix}$$

h = Matrix Vector

### Rewriting the mean squared error

Define the design matrix X to be the  $n \times 2$  matrix

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}.$$

- Define the parameter vector  $\vec{w} \in \mathbb{R}^2$  to be  $\vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$ .
- Then  $\vec{h} = X\vec{w}$ , so the mean squared error becomes:

$$R_{sq}(H) = \frac{1}{n} ||\vec{y} - \vec{h}||^2$$

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

### Mean squared error, reformulated

▶ Before, we found the values of  $w_0$  and  $w_1$  that minimized

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

► The results:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

**Now**, our goal is to find the vector  $\vec{w}$  that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

**Both versions of**  $R_{sq}$  are equivalent. The results will also be equivalent.

### Spoiler alert...

Goal: find the vector  $\vec{w}$  that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

► Spoiler alert: the answer¹ is

$$\vec{w^*} = (X^T X)^{-1} X^T \vec{y}$$

- Let's look at this formula in action in a notebook. Follow along here.
- Then we'll prove it ourselves by hand.

<sup>&</sup>lt;sup>1</sup>assuming  $X^TX$  is invertible

# Minimizing mean squared error, again

# Some key linear algebra facts

If A and B are matrices, and  $\vec{u}$ ,  $\vec{v}$ ,  $\vec{w}$ ,  $\vec{z}$  are vectors:

$$(A + B)^T = A^T + B^T$$

$$(AB)^T = B^T A^T$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^T \vec{v} = \vec{v}^T \vec{u}$$

$$||\vec{u}||^2 = \vec{u} \cdot \vec{u}$$

$$(\vec{u} + \vec{v}) \cdot (\vec{w} + \vec{z}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{z} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$$

### Goal

We want to minimize the mean squared error:

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- Strategy: Calculus.
- **Problem:** This is a *function of a vector*. What does it even mean to take the derivative of  $R_{sq}(\vec{w})$  with respect to a vector  $\vec{w}$ ?

### A function of a vector

Solution: A function of a vector is really just a function of multiple variables, which are the components of the vector. In other words,

$$R_{sq}(\vec{w}) = R_{sq}(w_0, w_1, ..., w_d)$$

where  $w_0, w_1, ..., w_d$  are the entries of the vector  $\vec{w}$ .<sup>2</sup>

We know how to deal with derivatives of multivariable functions: the gradient!

<sup>&</sup>lt;sup>2</sup>In our case,  $\vec{w}$  has just two components,  $w_0$  and  $w_1$ . We'll be more general since we eventually want to use prediction rules with even more parameters.

### The gradient with respect to a vector

The gradient of  $R_{sq}(\vec{w})$  with respect to  $\vec{w}$  is the vector of partial derivatives:

$$\nabla_{\vec{w}} R_{sq}(\vec{w}) = \frac{dR_{sq}}{d\vec{w}} = \begin{bmatrix} \frac{\partial R_{sq}}{\partial w_0} \\ \frac{\partial R_{sq}}{\partial w_1} \\ \vdots \\ \frac{\partial R_{sq}}{\partial w_d} \end{bmatrix}$$

where  $w_0, w_1, ..., w_d$  are the entries of the vector  $\vec{w}$ .

## **Example gradient calculation**

**Example:** Suppose  $f(\vec{x}) = \vec{a} \cdot \vec{x}$ , where  $\vec{a}$  and  $\vec{x}$  are vectors in  $\mathbb{R}^n$ . What is  $\frac{d}{d\vec{x}} f(\vec{x})$ ?

### Goal

We want to minimize the mean squared error:

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- Strategy:
  - 1. Compute the gradient of  $R_{sq}(\vec{w})$ .
  - 2. Set it to zero and solve for  $\vec{w}$ .
    - ightharpoonup The result is called  $\vec{w}^*$ .
- Let's start by rewriting the mean squared error in a way that will make it easier to compute its gradient.

# Rewriting mean squared error

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

### **Discussion Question**

Which of the following is equivalent to  $R_{sq}(\vec{w})$ ?

a) 
$$\frac{1}{n}(\vec{y} - X\vec{w}) \cdot (X\vec{w} - y)$$

b) 
$$\frac{1}{n}\sqrt{(\vec{y}-X\vec{w})\cdot(y-X\vec{w})}$$

c) 
$$\frac{1}{n}(\vec{y}-X\vec{w})^T(y-X\vec{w})$$

d) 
$$\frac{1}{n}(\vec{y} - X\vec{w})(y - X\vec{w})^T$$

# **Rewriting mean squared error**

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

# **Rewriting mean squared error**

$$R_{\rm sq}(\vec{w}) =$$

## **Compute the gradient**

$$\frac{dR_{\text{sq}}}{d\vec{w}} = \frac{d}{d\vec{w}} \left( \frac{1}{n} \left[ \vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right] \right) 
= \frac{1}{n} \left[ \frac{d}{d\vec{w}} \left( \vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left( 2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left( \vec{w}^T X^T X \vec{w} \right) \right]$$

## **Compute the gradient**

$$\frac{dR_{\text{sq}}}{d\vec{w}} = \frac{d}{d\vec{w}} \left( \frac{1}{n} \left[ \vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right] \right)$$
$$= \frac{1}{n} \left[ \frac{d}{d\vec{w}} \left( \vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left( 2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left( \vec{w}^T X^T X \vec{w} \right) \right]$$

- - ▶ Why?  $\vec{y}$  is a constant with respect to  $\vec{w}$ .
- $\qquad \qquad \frac{d}{d\vec{w}} \left( \vec{2} X^T \vec{y} \cdot \vec{w} \right) = 2 X^T y.$ 
  - ► Why? We already showed  $\frac{d}{d\vec{x}}\vec{a} \cdot \vec{x} = \vec{a}$ .
- $\qquad \qquad \frac{d}{d\vec{w}} \left( \vec{w}^T X^T X \vec{w} \right) = 2 X^T X \vec{w}.$ 
  - ▶ Why? See Homework 4.

## **Compute the gradient**

$$\frac{dR_{\text{sq}}}{d\vec{w}} = \frac{d}{d\vec{w}} \left( \frac{1}{n} \left[ \vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right] \right) 
= \frac{1}{n} \left[ \frac{d}{d\vec{w}} \left( \vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left( 2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left( \vec{w}^T X^T X \vec{w} \right) \right]$$

### The normal equations

To minimize  $R_{sq}(\vec{w})$ , set its gradient to zero and solve for  $\vec{w}$ :

$$-2X^{T}\vec{y} + 2X^{T}X\vec{w} = 0$$

$$\implies X^{T}X\vec{w} = X^{T}\vec{y}$$

- This is a system of equations in matrix form, called the normal equations.
- ► If  $X^TX$  is invertible, the solution is

$$\vec{\mathbf{W}}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{\mathbf{y}}$$

- This is equivalent to the formulas for  $w_0^*$  and  $w_1^*$  we saw before!
  - Benefit this can be easily extended to more complex prediction rules.

# **Summary**

### **Summary**

We used linear algebra to rewrite the mean squared error for the prediction rule  $H(x) = w_0 + w_1 x$  as

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- X is called the **design matrix**,  $\vec{w}$  is called the **parameter vector**,  $\vec{y}$  is called the **observation vector**, and  $\vec{h} = X\vec{w}$  is called the **hypothesis vector**.
- We minimized  $R_{sq}(\vec{w})$  using multivariable calculus and found that the minimizing  $\vec{w}$  satisfies the **normal** equations,  $X^T X \vec{w} = X^T \vec{y}$ .
  - ► If  $X^TX$  is invertible, the solution is:

$$\vec{\mathbf{W}}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{\mathbf{y}}$$

### What's next?

- ► The whole point of reformulating linear regression in terms of linear algebra was so that we could generalize our work to more sophisticated prediction rules.
  - Note that when deriving the normal equations, we didn't assume that there was just one feature.
- Examples of the types of prediction rules we'll be able to fit soon:

$$\vdash H(x) = W_0 + W_1 x + W_2 x^2.$$

$$H(x) = W_0 + W_1 \cos(x) + W_2 e^x$$
.

$$H(x^{(1)}, x^{(2)}) = W_0 + W_1 x^{(1)} + W_2 x^{(2)}.$$

• e.g. Predicted Salary =  $w_0 + w_1$ (Years of Experience) +  $w_2$ (GPA).