


Announcements

No homework due this week.

Homework 4 will be out this Friday (Feb. 9) after
Midterm 1.

Homework 4 due date extend to next Friday (Feb. 16)



Midterm 1 is Friday during lecture

Formula sheet will be provided for you. No other notes.
No calculators. This implies no crazy calculations.

Assigned seats will be posted on Course Website and
Campuswire.

We will not answer questions during the exam. State your
assumptions if anything is unclear.

The exam will include long-answer homework-style
questions, as well as short-answer questions such as
True/False or filling in a numerical answer.

The exam covers Homeworks 1 through 3 plus additional
contents in linear algebra and multiple linear regression.


https://dsc40a.com/resources/notes/reference_1.pdf

Midterm study strategy

Review the written solutions to previous homeworks and
groupworks.

Identify which concepts are still uncertain. Re-watch
podcasts, post on Campuswire, come to office hours, use
resources on course website, watch Janine’s lecture
videos.

Work through past exams on course website and the
posted mock exam.

Study in groups.
Summarize key facts and formulas.

Some problems are easier, some problems are harder.


https://dsc40a.com/resources
https://dsc40a.com/resources

Some Tips About Midterm

Understand the derivations we did in lecture.

There will be derivation problems in the midterm, but
no long derivation.

Understand the derivation | did in lecture and some

methods | used g%+@ — ﬂé ‘j’ﬂl?

Be able to perform simple algebra, calculus and linear
algebra computation

Example: calculating matrix multiplication.

Read each question carefully.

Example: using formal definition to prove convexity
vs. using any method to prove convexity.



Extra Credit Opportunity

The last problem on HW4 will be a class-wide competition
on finding energies for High-Purity Germanium Detector
waveforms

I'll explain what this is on next Monday'’s lecture,
after the exam.

Top predictions will get extra credit on Midterm 1.

More detail next Monday



Agenda

Incorporating multiple features.
Interpreting parameters.

Feature engineering.



Incorporating multiple features



Last time

We minimized the mean squared error for the prediction
rule H(x) = w, + w,x, which was

- 1 - -
RSq(W)= E”g_xwllz
58

We found that the minimizing w satisfies the normal
equations, X" Xw = X"y.
If XX is invertible, the solution is:

W* — (XTX)_1XT)7

These same normal equations can be used to solve the
multiple linear regression problem, where we use

multiple features to predict an outcome. We simply need
to adjust the design matrix X.



Multiple linear regression example

We're want to fit a linear prediction rule with two features:

H(experience, GPA) = w, + w,(experience) + w,(GPA)

Collect data for each of n people:

Person # | Experience GPA | Salary

1 3 3.7 | 85,000
6 3.3 | 95,000
3 10 31| 105,000

We represent each person with a feature vector:

. _[3 . _[6 2 _[10
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Prediction rule form determines design matrix

When our prediction rule is

H(experience, GPA) = w, + w,(experience) + w,(GPA),

the hypothesis vector h € R" can be written

"H(experience., GPA,)T "1 experience, GPA,] .
b= H(experiencez,GPAz) _ 1 experience2 GPA, [W:)
| H(experience , GPA, ). |1 experience, GPA_ | KV%
\J

Notice that the rows of the design matrixthhe
(transposed) feature vectors, with an additjonal 1in front.
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Notation for multiple linear regression

We will need to keep track of multiple' features for every
individual in our data set.

As before, subscripts distinguish between individuals in
our data set. We have n individuals (or training
examples).

Superscripts distinguish between features.? We have d

features. — (O (22 |
experience = x( \ LR
GPA = x() 9 « e
| K T2

'In practice, we might use hundreds or even thousands of features.
2Think of them as new variable names, such as new letters.



Augmented feature vectors

The augmented feature vector Aug(x) is the vector
obtained by adding a 1 to the front of feature vector X:

(1) ETAw
xNE=— T w
1
- X(2) - ( -
X = Aug(X) = | ) W= [,
' : ¢
_X(d)_ * R
_X(d)_éf AW,




The general problem

We have n data points (or training examples):
(%, Y1), -, (X, y,) where each %; is a feature vector of d

features:
- ()
Xi
(2)
X. = | Xi
I
d
X"

We want to find a good linear prediction rule:

HZ) = wy + wo xM + w,x@ + L+ w x(@)

= W - Aug(X)



The general solution

Use design matrix

] - o
? 9N ‘%IV\:I[/O"J? Xg” ng) Xg ) TAug( 1)T
- _}’J/?Xg) ng) ng) _ Aug(x;)"
Pron 2 Tnfo [1 x0 x@ . <o Lavgz,)

and observation vector to solve the normal equations
X" Xw* = X'y

to find the optimal parameter vector.



Terminology for parameters

With d features, w has d + 1 entries.

wg is the bias, also known as the.intercept.

w,, ..., W, each give theaweight, i.e. coefficient, of a

feature.

H(X) = w, + w, XM+ L+ de(d)



Interpreting parameters



Example: predicting sales

For each of 26 stores, we have:

net sales, @/ (9

square feet, A
inventor (&)

S c3)
advertising expenditure, 74
district size, and *[5?7 (65

number of competing stores. ‘K
Goal: predict net sales given these features

To begin:
H(square feet, competitors) = w,+w, (square feet)+w,(competitors)



Example: predicting sales

H(square feet, competitors) =

w,+w,(square feet)+w,(competitors)

Discussion Question

a) wy =+ W =-
b) W,T w; = +
c) wj = w; =
d) wi = W;=+

What will be the sign of wy and wj?




Example: predicting sales

H(square feet, competitors) = w,+w, (square feet)+w,(competitors)

Discussion Question

What will be the sign of wy and wj?
a) wy =+, W =-
b) W,T w; =
c) wj = w; =
d) wi = w; =+

Let's try it out ourselves. Follow along here.


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec12/lec12.ipynb

Which features are most “important”?

Discussion Question

Which feature has the greatest effect on the outcome?

a) square feet:  wj = 16.202
b) competitors: w; = -5.311
c) inventory: w; = 0.175

d) advertising:  w% = 11.526
e) district size:  w; = 13.580

WERY




Which features are most “important”?

The most important feature is not necessarily the feature
with largest weight.

Features are measured in different units, scales.

Suppose | fit one prediction rule, H,, with sales in
dollars, and another prediction rule, H,, with sales in
thousands of dollars.

Sales is just as important in both prediction rules.
But the weight of sales in H, will be 1000 times
smaller than the weight of sales in H,.

Intuitive explanation: 5 x 45000 = (5 x 1000) x 45.

Solution: before doing regression, standardize each
feature, i.e. convert each feature to standard units.



Standard units

Recall: to convert a feature x,, x
we use the formula

Gﬂ(fﬁ[x)(ﬂl ) - - Xi

X n standard units = >
By s

Example: 1,7,7, 9= 3 )3, ‘\_,_,_,____1’:7_)(
Mean: 24 ,é —)‘r ‘

Standard deviation: L \ 2/ =
o = (SHH €3 :?34 !

51 - X, 10 standard units,

X

> L
3

Standardized data:
1’(5 __5 7’4/L L/——/( B’:
“’5/“’ é—) ?" Sy, % 3%, 3



Standard units for multiple linear regression

The result of standardizing each feature (separately!) is
that the units of each feature are on the same scale.

There's no need to standardize the outcome (net
sales), since it's not being compared to anything.

Then, solve the normal equations. The resulting

wg, Wy, ..., w); are called the standardized regression
coefficients.

Standardized regression coefficients can be directly
compared to one another.

Let's try it out in our demo notebook.


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec12/lec12.ipynb

Feature engineering



MPG vs. Horsepower
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Question: Would a linear prediction rule work well on this
dataset?



A quadratic prediction rule

It looks like there’s some sort of quadratic relationship
between horsepower and mpg in the last scatter plot. We
want to try and fit a prediction rule of the form

H(X) = Wy + W, X + W,x*

Note that while this is quadratic in horsepower, it is
linear in the parameters!

We can do that, by choosing our two “features” to be x;

and x,-2, respectively.

(1)

1 2
In other words, X; 2 _ 2

=x;and x; = Xj.

More generally, we can create new features out of
existing features.



A quadratic prediction rule

Desired prediction rule: H(X) = w, + W, X + W, X°.

The resulting design matrix looks like this:

p— 2 —
X, x12
X = 1 X, X5
2

L 1 Xn Xn .

To find optimal parameter vector w*: solve the normal
equations!

X"Xw* = XTy



More examples

What if we want to use a prediction rule of the form
H(X) = Wy + W, X + W, X2 + Wy X372

Wo
-
u\ 7&[ X( %‘ Ws
L
\ 7“2, W,
We,
What if we want to use a prediction rule of_the form
H = l 1 X? —
(x) Wizt W‘SmX+We %, T W
)
e oMKy é%-_ WL
2

s _



Feature engineering

More generally, we can create new features out of existing
information in our dataset. This process is called feature
engineering.
In this class, feature engineering will mostly be
restricted to creating non-linear functions of existing
features (as in the previous example).

In the future you'll learn how to do other things, like
encode categorical information.



Summary



Summary

The normal equations can be used to solve the multiple
linear regression problem, where we use multiple
features to predict an outcome.

We can interpret the parameters as weights. The signs of
weights give meaningful information, but we can only
compare weights if our features are standardized.

We can create non-linear features out of existing features.
This process is called feature engineering.

A prediction rule only needs to be a linear function of
the parameters for us to use linear regression. It
does not need to be a linear function of the features.



