Lecture 14 - Clustering

DSC 40A, Winter 2024



Announcements

HW4 posted last Friday, due this upcoming Friday

Top predictors on last HW4 problem earns extra
credit on midterm 1

Midterm 1 solution posted today, grade will be available
by Wednesday
Note: your final exam grade is determined by
Max{Midterm 1, Final Part I} + Max{Midterm 2, Final
Part 11}

If you are not satisfied with your midterm grade, you
can replace it by doing well in the Final



Agenda

HW4 Competition: Neutrino and High Purity Germanium
Detector

The clustering problem.
k-Means Clustering algorithm.
Why does k-Means work?

Practical considerations.



Neutrino and HPGe Detector



The clustering problem
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Question: how might we “cluster” these points
into groups?
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Problem statement: clustering

Goal: Given a list of n data points, stored as vectors in RY,
X11 X5, - X, @nd a positive integer R, place the data points into
k groups of nearby points.

These groups are called “clusters”.

Think about groups ascolors.

l.e., the goal of clustering is to assign each point a
color, such that points of the same color are close to

one another.

Note, unlike with regression, there is no “right answer”
that we are trying to predict —there is no y!

Clustering is an unsupervised method.



How do we define a group?

One solution: pick‘R cluster centers, i.e. centroids:
0., i, in RY
HqrHyyeeer Hy

These k centroids define the k groups.

Each data point “belongs” to the group corresponding to
the nearest centroid.

This reduces our problem from being “find the best group
for each data point” to being “find the best locations for
the centroids”.
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How do we pick the centroids?

Let’s come up with an cost function,/C, which describes
how good a set of centroids is.

Cost functions are a generalization of empirical risk
functions.

One possible cost function:

C(u,, My, ..., u,,) = total squared distance of each
data point X;to its
closest centroid H;

This C has a special name, inertia.

Lower values of C lead to “better” clusterings.
Goal: Find the centroids g5, i, ..., 4, that minimize C.



Discussion Question

Suppose we have n data points, X,,X,,..,X,, each of

n
which are in RY.
Suppose we want to cluster our dataset into R clusters.
How many ways can we assign points to clusters?
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How do we minimize inertia?

Problem: there are exponentially many possible
clusterings. It would take too long to try them all.

Another Problem: we can’t use calculus or algebra to
minimize C, since to calculate C we need to know which
points are in which clusters.

We need another solution.



k-Means Clustering



k-Means Clustering, i.e. Lloyd’s Algorithm

C

Here's an algorithm that attempts to minimize inertia:
Pick a value of k and randomly initialize R centroids.

- Keep the centroids fixed, and update the groups.
Assign each point to the nearest centroid.
(cdor €ah point fo e phearest Cenfmiop
Keep the groups fixed, and update the centroids.
Move each centroid to the center of its group.

(tpch W| awermge codtlirete)
Repeat steps 2 and 3 until the centroids stop changing.



Example

See the following site for an interactive visualization of
k-Means Clustering: https://tinyurl.com/40akmeans


https://tinyurl.com/40akmeans

An example by hand

Suppose we choose the initial centroids p, = ﬁ] and i, = [z]

Where will the centroids move to after one iteration of
k-Means Clustering? i§ /(,
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Demo

Let's see k-Means Clustering in action. Follow along here.


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec14/lec14.ipynb

Why does k-Means work?



What is the goal of k-Means Clustering?

Recall, our goal is to find the centroids py, i, ..., H, that
minimize inertia:
C(uq, My, ..y Mp) = total squared distance of each
data point X; to its
closest centroid M

Let's argue that each step of the k-Means Clustering
algorithm reduces inertia.

After enough iterations, inertia will be small enough.



Why does k-Means work? (Step 1)

Step 1: Pick a value of k and randomly initialize k centroids.

After initializing our kR centroids, we have an initial value
of inertia. We are going to argue that this only decreases.



Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by
assigning each point to the nearest centroid.

Assuming the centroids are fixed, for each X; we have a
choice — which group should it be a part of?

Whichever group we choose, inertia will be calculated
using the squared distance between X; and that group’s
centroid.

Thus, to minimize inertia, we assign each X; to the group
corresponding to the closest centroid.

Note that this analysis holds every time we're at Step 2, not
just the first time.



Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).

Before we justify why this is optimal, let’s revisit inertia.



Aside: separating inertia
Inertia:

C(uq,Hy,.., Hp) = total squared distance of each
data point Xto its
closest centroid H;

Note that an equivalent way to write inertia is

C(Hqy Uy - M) = Cuy) + C(H,) + .. + C(py,) where
C(uj) = total squared distance of each

data point X; in group j
to centroid H;

What's the point?



Why does k-Means work? (Step 3)

C(pys Mgy e M) = C(p,) + C(Y,) + ... + C(u,) where
C(p;) = total squared distance of each data point X,

in group J to centroid H;

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).

Let's argue why this minimizes C(H,-), for each groupJ.



Why does k-Means work? (Step 3)

C(p;) = total squared distance of each data point X;
In group j to centroid H;

Suppose group j contains the points (4, 3), (6, 4), and (8, 2).

Where should we.put u. = [a] to minimize C(u.)?
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Why does k-Means W%ﬁk? (Step 3)
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Why does k-Means work? (Step 3)

C(H,-) = total squared distance of each data point X
In group j to centroid H;
Suppose group j contains the points (4, 3), (6, 4), and (8, 2).
Where should we put p; = [g] to minimize C(H,-)?



Cost and empirical risk

On the previous slide, we saw a function of the form

C(w;) = C(a,b) = (4-a)’ + (3 - by’
+(6-a)’ + (4 - b)?
+(8-a)?+(2-b)?

C(a, b) can be thought of as the sum of two separate
functions, f(a) and g(b).

f(a) = (4 - a)® + (6 - a)® + (8 - a)’> computes the total
squared distance of each x, coordinate to a.
From earlier in the course, we know that a* =
minimizes f(a).

4+6+8 _
3—6




Practical considerations



Initialization

Depending on our initial centroids, k-Means may
“converge” to a clustering that doesn’t actually have the
lowest possible inertia.
In other words, like gradient descent, k-Means can
get caught in a local minimum.

Some solutions:
Run k-Means several times, each with different
randomly chosen initial centroids. Keep track of the
inertia of the final result in each attempt. Choose the
attempt with the lowest inertia.

k-Means++: choose one initial centroid at random,
and place other centroids far from all other centroids.


http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

Choosing kR

Note that as R increases, inertia decreases.

Intuitively, as we add more centroids, the distance
between each point and its closest centroid will drop.

But the goal of clustering is to put data points into
groups, and having a large number of groups may not be

meaningful.

This suggests a tradeoff between k and inertia.



The “elbow” method

Strategy: run k-Means Clustering for many choices of R
(eg. k=1,2,3,..,8).

Compute the value of inertia for each resulting set of
centroids.

Plot a graph of inertia vs R.

Choose the value of k that appears at an “elbow”.

k (number of clusters)

See the notebook for a demo.


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec14/lec14.ipynb

Low inertia isn't everything!

Even if k-Means works as intended and finds the choice of
centroids that minimize inertia, the resulting clustering
may not look “right” to us humans.

Recall, inertia measures the total squared distance to
centroids.

This metric doesn’t always match our intuition.
Let's look at some examples at

https://tinyurl.com/40akmeans.
Go to “I'll Choose” and “Smiley Face”. Good luck!


https://tinyurl.com/40akmeans




Other clustering techniques

k-Means Clustering is just one way to cluster data.

There are many others, each of which work differently and
produce different kinds of results.

Another common technique: agglomerative clustering.

High level: start out with each point being in its own
cluster. Repeatedly combine clusters until only k are

left.

Check out this chart.


https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_001.png

Summary

k-Means Clustering attempts to minimize inertia.

We showed that it minimizes inertia at each step, but
it's possible that it converges to a local minimum.

Different initial centroids can lead to different
clusterings.

To choose R, the number of clusters, we can use the
elbow method.

Next time: switching gears to probability and
combinatorics.



