#### **Lecture 14 - Clustering**



**DSC 40A, Winter 2024** 

#### **Announcements**

- HW4 posted last Friday, due this upcoming Friday
  - Top predictors on last HW4 problem earns extra credit on midterm 1
- Midterm 1 solution posted today, grade will be available by Wednesday
  - Note: your final exam grade is determined by Max{Midterm 1, Final Part I} + Max{Midterm 2, Final Part II}
  - If you are not satisfied with your midterm grade, you can replace it by doing well in the Final

#### **Agenda**

- HW4 Competition: Neutrino and High Purity Germanium Detector
- ► The clustering problem.
- k-Means Clustering algorithm.
- Why does k-Means work?
- Practical considerations.

### Neutrino and HPGe Detector

## The clustering problem



<sup>&</sup>lt;sup>1</sup>taken from Joseph Gonzalez at UC Berkeley

### Question: how might we "cluster" these points into groups?



#### **Problem statement: clustering**

**Goal:** Given a list of n data points, stored as vectors in  $\mathbb{R}^d$ ,  $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ , and a positive integer k, place the data points into k groups of nearby points.

- These groups are called "clusters".
- Think about groups as colors.
  - i.e., the goal of clustering is to assign each point a color, such that points of the same color are close to one another.
- Note, unlike with regression, there is no "right answer" that we are trying to predict there is no y!
  - Clustering is an unsupervised method.

#### How do we define a group?

One solution: pick k cluster centers, i.e. centroids:

$$\vec{\mu}_1, \vec{\mu}_2, ..., \vec{\mu}_k$$
 in  $\mathbb{R}^d$ 

- ► These *k* centroids define the *k* groups.
- Each data point "belongs" to the group corresponding to the nearest centroid.
- ► This reduces our problem from being "find the best group for each data point" to being "find the best locations for the centroids".



#### How do we pick the centroids?

- Let's come up with an **cost function**, *C*, which describes how good a set of centroids is.
  - Cost functions are a generalization of empirical risk functions
- One possible cost function:

$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point  $\vec{x}_i$  to its closest centroid  $\mu_i$ 

- This C has a special name, inertia.
- Lower values of C lead to "better" clusterings.
  - ▶ **Goal:** Find the centroids  $\mu_1, \mu_2, ..., \mu_k$  that minimize C.

#### **Discussion Question**

Suppose we have *n* data points,  $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ , each of which are in  $\mathbb{R}^d$ .

Suppose we want to cluster our dataset into k clusters.

How many ways can we assign points to clusters?

- a)  $d \cdot k$
- e)  $n \cdot k \cdot d$

#### How do we minimize inertia?

- Problem: there are exponentially many possible clusterings. It would take too long to try them all.
- ► Another Problem: we can't use calculus or algebra to minimize *C*, since to calculate *C* we need to know which points are in which clusters.
- We need another solution.

## k-Means Clustering

#### k-Means Clustering, i.e. Lloyd's Algorithm

Here's an algorithm that attempts to minimize inertia:

- 1. Pick a value of k and randomly initialize k centroids.
- 2. Keep the centroids fixed, and update the groups.
  - Assign each point to the nearest centroid.
- 3. Keep the groups fixed, and update the centroids.
  - Move each centroid to the center of its group.

4. Repeat steps 2 and 3 until the centroids stop changing.

#### **Example**

See the following site for an interactive visualization of k-Means Clustering: https://tinyurl.com/40akmeans

#### An example by hand

Suppose we choose the initial centroids  $\mu_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and  $\mu_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ . Where will the centroids move to after one iteration of k-Means Clustering?



#### Demo

Let's see k-Means Clustering in action. Follow along here.

# Why does k-Means work?

#### What is the goal of k-Means Clustering?

Recall, our goal is to find the centroids  $\mu_1, \mu_2, ..., \mu_k$  that minimize inertia:

$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point  $\vec{x}_i$  to its closest centroid  $\mu_i$ 

- Let's argue that each step of the k-Means Clustering algorithm reduces inertia.
  - After enough iterations, inertia will be small enough.

**Step 1**: Pick a value of *k* and randomly initialize *k* centroids.

After initializing our *k* centroids, we have an initial value of inertia. We are going to argue that this only decreases.

**Step 2**: Keep the centroids fixed, and update the groups by assigning each point to the nearest centroid.

- Assuming the centroids are fixed, for each  $\vec{x}_i$  we have a choice which group should it be a part of?
- Mhichever group we choose, inertia will be calculated using the squared distance between  $\vec{x}_i$  and that group's centroid.
- Thus, to minimize inertia, we assign each  $\vec{x}_i$  to the group corresponding to the closest centroid.

Note that this analysis holds every time we're at Step 2, not just the first time.

**Step 3**: Keep the groups fixed, and update the centroids by moving each centroid to the center of its group (by averaging coordinates).

▶ Before we justify why this is optimal, let's revisit inertia.

#### Aside: separating inertia

► Inertia:

$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point  $\vec{x}_i$  to its closest centroid  $\mu_i$ 

Note that an equivalent way to write inertia is

$$C(\mu_1, \mu_2, ..., \mu_k) = C(\mu_1) + C(\mu_2) + ... + C(\mu_k)$$
 where  $C(\mu_j) = \text{total squared distance of each}$  data point  $\vec{x}_i$  in group  $j$  to centroid  $\mu_i$ 

What's the point?

$$C(\mu_1, \mu_2, ..., \mu_k) = C(\mu_1) + C(\mu_2) + ... + C(\mu_k)$$
 where 
$$C(\mu_j) = \text{total squared distance of each data point } \vec{x}_i$$
 in group  $j$  to centroid  $\mu_j$ 

**Step 3**: Keep the groups fixed, and update the centroids by moving each centroid to the center of its group (by averaging coordinates).

Let's argue why this minimizes  $C(\mu_i)$ , for each group j.

 $C(\mu_i)$  = total squared distance of each data point  $\vec{x}_i$ in group j to centroid  $\mu_i$ 

Suppose group j contains the points (4, 3), (6, 4), and (8, 2).

Where should we put  $\mu_j = \begin{bmatrix} a \\ b \end{bmatrix}$  to minimize  $C(\mu_j)$ ?



 $C(\mu_i)$  = total squared distance of each data point  $\vec{x}_i$ in group j to centroid  $\mu_i$ 

Suppose group j contains the points (4, 3), (6, 4), and (8, 2).

Where should we put  $\mu_j = \begin{bmatrix} a \\ b \end{bmatrix}$  to minimize  $C(\mu_j)$ ?



#### Cost and empirical risk

On the previous slide, we saw a function of the form

$$C(\mu_j) = C(a, b) = (4 - a)^2 + (3 - b)^2$$
$$+ (6 - a)^2 + (4 - b)^2$$
$$+ (8 - a)^2 + (2 - b)^2$$

- ightharpoonup C(a, b) can be thought of as the sum of two separate functions, f(a) and g(b).
  - ►  $f(a) = (4 a)^2 + (6 a)^2 + (8 a)^2$  computes the total squared distance of each  $x_1$  coordinate to a.
  - From earlier in the course, we know that  $a^* = \frac{4+6+8}{3} = 6$  minimizes f(a).

#### **Practical considerations**

#### **Initialization**

- Depending on our initial centroids, k-Means may "converge" to a clustering that doesn't actually have the lowest possible inertia.
  - In other words, like gradient descent, k-Means can get caught in a **local minimum**.
- Some solutions:
  - Run k-Means several times, each with different randomly chosen initial centroids. Keep track of the inertia of the final result in each attempt. Choose the attempt with the lowest inertia.
  - k-Means++: choose one initial centroid at random, and place other centroids far from all other centroids.

#### **Choosing** *k*

- Note that as *k* increases, inertia decreases.
  - Intuitively, as we add more centroids, the distance between each point and its closest centroid will drop.
- But the goal of clustering is to put data points into groups, and having a large number of groups may not be meaningful.
- This suggests a tradeoff between k and inertia.

#### The "elbow" method

- Strategy: run k-Means Clustering for many choices of k (e.g. k = 1, 2, 3, ..., 8).
- Compute the value of inertia for each resulting set of centroids.
- ▶ Plot a graph of inertia vs k.
- Choose the value of k that appears at an "elbow".



See the notebook for a demo.

#### Low inertia isn't everything!

- Even if k-Means works as intended and finds the choice of centroids that minimize inertia, the resulting clustering may not look "right" to us humans.
  - Recall, inertia measures the total squared distance to centroids.
  - This metric doesn't always match our intuition.
- Let's look at some examples at https://tinyurl.com/40akmeans.
  - ► Go to "I'll Choose" and "Smiley Face". Good luck!



#### Other clustering techniques

- k-Means Clustering is just one way to cluster data.
- There are many others, each of which work differently and produce different kinds of results.
- Another common technique: agglomerative clustering.
  - ► High level: start out with each point being in its own cluster. Repeatedly combine clusters until only *k* are left.
- Check out this chart.

#### **Summary**

- k-Means Clustering attempts to minimize inertia.
  - We showed that it minimizes inertia at each step, but it's possible that it converges to a local minimum.
  - Different initial centroids can lead to different clusterings.
- To choose *k*, the number of clusters, we can use the elbow method.
- Next time: switching gears to probability and combinatorics.