Lecture 16 - Conditional Probability, Sequences and Permutations

DSC 40A, Spring 2023

Announcements

- ► HW4 due tonight
 - HW4 Question 6 is mandatory
 - Look at Campuswire pinned post for more hints.
- Homework 5 is released, due Next Wednesday at 11:59pm.
- Important: We've posted many probability resources on the resources tab of the course website. These will no doubt come in handy.
 - No more DSC 40A-specific readings, though the Probability Roadmap was written specifically for students of this course.

Agenda

- Conditional probability.
- Simpson's Paradox.
- Sequences and permutations.

Example: rolling a die

Suppose we roll the die twice. What is the probability that the two rolls have different faces?

Conditional probability

Last time

- \nearrow \bar{A} is the complement of event A. $P(\bar{A}) = 1 P(A)$.
- For any two events A and B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

If A and B are mutually exclusive, this simplifies to be Zerof Empty

$$P(A \cup B) = P(A) + P(B)$$

The probability that events A and B both happen is

$$P(A \cap B) = P(A)P(B|A).$$

 \triangleright P(B|A) is the conditional probability of B occurring, given that A occurs. If P(B|A) = P(B), then events A and B are independent.

Conditional probability

- ► The probability of an event may **change** if we have additional information about outcomes.
- Starting with the multiplication rule, $P(A \cap B) = P(A)P(B|A)$, we have that

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

assuming that P(A) > 0.

Example: pets

Suppose a family has two pets. Assume that it is equally likely that each pet is a dog or a cat. Consider the following two probabilities:

- 1. The probability that both pets are dogs given that **the oldest is a dog**.
- 2. The probability that both pets are dogs given that **at least** one of them is a dog.

Discussion Question

Are these two probabilities equal?

- a) Yes, they're equal
- b) No, they're not equal

Example: pets

Let's compute the probability that both pets are dogs given that the oldest is a dog

that the oldest is a dog.

Solder

PCB A) =
$$\frac{P(B \text{ oud } A)}{P(A)} = \frac{P(B)}{P(A)} = \frac{1}{1/2}$$

Example: pets

Let's now compute the probability that both pets are dogs given that at least one of them is a dog.

Example: dominoes (source: 538)

In a set of dominoes, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five, or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Example: dominoes (source: 538)

diagonals

Question 1: What is the probability of drawing a "double" from a set of dominoes — that is, a tile with the same number on both sides?

$$P(Double | AD) = \frac{1}{28} = \frac{1}{4}$$

Example: dominoes (source: 538)

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6. What is the probability that your friend's tile is a double, with 6 on both sides?

Example: dominoes (source: 538)

We do not know which side is

Ouestion 3: New you pick a random tile from the set and A 195100

Question 3: Now you pick a random tile from the set and Uncovered uncover only one side, revealing that it has six dots. What is the probability that this tile is a double, with six on both sides?

7 dominos with 8 samples and on two diff. and on two diff. a double contain 2 samples

Rrobability:
$$\frac{2}{8} = \frac{1}{4}$$

See 538's explanation here.

un cover 6 = 7 8 samples 8 x7 = 56 elements if we uncover one sample. uncover 5 => 8 samples < uncover 4 => 8 samples PL66 (Juncoverb)

Simpson's Paradox

$$P(66 | uncover 6) = P(uncover 6)$$

$$= \frac{P(66)}{P(uncover 6)} = \frac{1/28}{8/56} = \frac{2156}{8/56}$$

$$= \frac{2156}{8/56} = \frac{2}{8}$$

mover

uncover

cury #

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Discussion Question

Which treatment is better?

- a) Treatment A for all cases.
- b) Treatment B for all cases.
- c) Treatment A for small stones and B for large stones.
- d) Treatment A for large stones and B for small stones.

Simpson's Paradox (source: nih.gov)

		Treatment A	Treatment B
differen	Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
	targe kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
	Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox occurs when an association between two variables exists when the data is divided into subgroups, but reverses or disappears when the groups are combined.

See more in DSC 80.

Sequences and permutations

Motivation

- Many problems in probability involve counting.
 - Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
 - Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
 - If drawing cards from a deck, the population is the deck of all cards.
 - ► If selecting people from DSC 40A, the population is everyone in DSC 40A.
- ► Two decisions:
 - Do we select elements with or without replacement?
 - Does the order in which things are selected matter?

Sequences

- A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
- **Example:** Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.

► **Example:** A UCSD PID starts with "A" then has 8 digits. How many UCSD PIDs are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that **repetition is allowed** and **order matters** is n^k .

(Note: We mentioned this fact in the lecture on clustering!)

Permutations

- A **permutation** is obtained by selecting *k* elements from a group of *n* possible elements **without replacement**, such that **order matters**.
- Example: Draw 4 cards (without replacement) from a standard 52-card deck.

Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

In general, the number of ways to select *k* elements from a group of *n* possible elements such that **repetition is not allowed** and **order matters** is

$$P(n,k) = (n)(n-1)...(n-k+1)$$

► To simplify: recall that the definition of *n*! is

$$n! = (n)(n - 1)...(2)(1)$$

Given this, we can write

$$P(n,k) = \frac{n!}{(n-k)!}$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top

- 3 choices?
 - a) 21
 - b) 210
 - c) 343
 - d) 2187
 - e) None of the above.

Special case of permutations

Suppose we have n people. The total number of ways I can rearrange these n people in a line is

This is consistent with the formula

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!$$

Summary, next time

Summary

► The **conditional probability** of *B* given *A* is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

- A **sequence** is obtained by selecting *k* elements from a group of *n* possible elements with replacement, such that order matters.
 - Number of sequences: n^k .
- A **permutation** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order matters.
 - Number of permutations: $P(n, k) = \frac{n!}{(n-k)!}$.
- Next time: combinations, where order doesn't matter.