Lecture 16 - Conditional Probability, Sequences and Permutations

DSC 40A, Spring 2023

Announcements

- HW4 due tonight
- HW4 Question 6 is mandatory
- Look at Campuswire pinned post for more hints.
- Homework 5 is released, due Next Wednesday at 11:59pm.
- Important: We've posted many probability resources on the resources tab of the course website. These will no doubt come in handy.
- No more DSC 40A-specific readings, though the Probability Roadmap was written specifically for students of this course.

Agenda

- Conditional probability.
- Simpson's Paradox.
- Sequences and permutations.

Example: rolling a die

- Suppose we roll the die twice. What is the probability that the two rolls have different faces?

Conditional probability

Last time

- \bar{A} is the complement of event $A . P(\bar{A})=1-P(A)$.
- For any two events A and B

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

If A and B are mutually exclusive, this simplifies to

$$
P(A \cup B)=P(A)+P(B) .
$$

- The probability that events A and B both happen is

$$
P(A \cap B)=P(A) P(B \mid A) .
$$

- $P(B \mid A)$ is the conditional probability of B occurring, given that A occurs. If $P(B \mid A)=P(B)$, then events A and B are independent.

Conditional probability

- The probability of an event may change if we have additional information about outcomes.
- Starting with the multiplication rule, $P(A \cap B)=P(A) P(B \mid A)$, we have that

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

assuming that $P(A)>0$.

Example: pets

Suppose a family has two pets. Assume that it is equally likely that each pet is a dog or a cat. Consider the following two probabilities:

1. The probability that both pets are dogs given that the oldest is a dog.
2. The probability that both pets are dogs given that at least one of them is a dog.

Discussion Question

Are these two probabilities equal?
a) Yes, they're equal
b) No, they're not equal

Example: pets

Let's compute the probability that both pets are dogs given that the oldest is a dog.

Example: pets

Let's now compute the probability that both pets are dogs given that at least one of them is a dog.

Example: dominoes (source: 538)

In a set of dominoes, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five, or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Example: dominoes (source: 538)

Question 1: What is the probability of drawing a "double" from a set of dominoes - that is, a tile with the same number on both sides?

Example: dominoes (source: 538)

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6 . What is the probability that your friend's tile is a double, with 6 on both sides?

Example: dominoes (source: 538)

Question 3: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What is the probability that this tile is a double, with six on both sides?

See 538's explanation here.

Simpson's Paradox

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Discussion Question

Which treatment is better?
a) Treatment A for all cases.
b) Treatment B for all cases.
c) Treatment A for small stones and B for large stones.
d) Treatment A for large stones and B for small stones.

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox occurs when an association between two variables exists when the data is divided into subgroups, but reverses or disappears when the groups are combined.

- See more in DSC 80.

Sequences and permutations

Motivation

- Many problems in probability involve counting.
- Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
- Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
- If drawing cards from a deck, the population is the deck of all cards.
- If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:
- Do we select elements with or without replacement?
- Does the order in which things are selected matter?

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.
- Example: A UCSD PID starts with " A " then has 8 digits. How many UCSD PIDs are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that repetition is allowed and order matters is n^{k}.
(Note: We mentioned this fact in the lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: Draw 4 cards (without replacement) from a standard 52-card deck.
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

- In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$
P(n, k)=(n)(n-1) \ldots(n-k+1)
$$

- To simplify: recall that the definition of n ! is

$$
n!=(n)(n-1) \ldots(2)(1)
$$

- Given this, we can write

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?
a) 21
b) 210
c) 343
d) 2187
e) None of the above.

Special case of permutations

- Suppose we have n people. The total number of ways I can rearrange these n people in a line is
- This is consistent with the formula

$$
P(n, n)=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n!
$$

Summary, next time

Summary

- The conditional probability of B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Number of sequences: n^{k}.
- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- Next time: combinations, where order doesn't matter.

