# Lecture 17 - Sequences, Permutations, and Combinations



**DSC 40A, Winter 2024** 

#### **Announcements**

- Homework 5 is due Tonight.
  - Please come to office hours if you have questions!
- Important: We've posted many probability resources on the resources tab of the course website. These will no doubt come in handy.
  - No more DSC 40A-specific readings, though the Probability Roadmap was written specifically for students of this course.



# HDSI Undergraduate Social

All HDSI Undergrads and Faculty Welcome



Join us for light refreshments and meet fellow students and faculty before finals start!

DDS AND HDSI DEI COMMITTEE JOINT EVENT

# **Agenda**

Sequences, permutations, and combinations.

# Sequences, permutations, and combinations

#### **Motivation**

- Many problems in probability involve counting.
  - Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
  - Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

# Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
  - If drawing cards from a deck, the population is the deck of all cards.
  - ► If selecting people from DSC 40A, the population is everyone in DSC 40A.
- ► Two decisions:
  - Do we select elements with or without replacement?
  - Does the order in which things are selected matter?

#### **Sequences**

- A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
- **Example:** Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.  $\gamma = 52$

One willity: 
$$\sqrt{10}$$
,  $\sqrt{10}$ 

**Example:** A UCSD PID starts with "A" then has 8 digits.

How many UCSD PIDs are possible? 
$$N=10$$

CF) A12345678

options =  $0-9$ 

h=8

=  $N^{2}$ 

no choice=  $\left[ \cdot (10-20-10) = 0.8 \right]$ 

#### **Sequences**

In general, the number of ways to select k elements from a group of n possible elements such that **repetition is allowed** and **order matters** is  $n^k$ .



(Note: We mentioned this fact in the lecture on clustering!)

#### **Permutations**

- A **permutation** is obtained by selecting *k* elements from a group of *n* possible elements **without replacement**, such that **order matters**.
- **Example:** Draw 4 cards (without replacement) from a N=52 standard 52-card deck. One poss(b) if y: QQ, QJ, QO, QS
- How many possibilities: 52.5/50.49 52-44
  - vice president, and secretary from a group of 8 people?

    The each person a name of both eff, h

$$VP = a$$
  
 $VP = a$   
 $VP =$ 

#### **Permutations**

$$P(n,k) = \frac{n!}{(n-k)!}$$

In general, the number of ways to select k elements from a group of *n* possible elements such that **repetition is not allowed** and **order matters** is

$$P(n,k) = (n)(n-1)...(n-k+1)$$

To simplify: recall that the definition of n! is

$$n! = (n)(n - 1)...(2)(1)$$

does the orelar matter? True Permutathon.
Can we have repetition? False n=7 k=3

#### **Discussion Question**

UCSD has 7 colleges. How many ways can I rank my top 3 choices? a) 21

b) 210

c) 343 d) 2187

e) None of the above.

ex) Seventh Sixth Mur,

# **Special case of permutations**

$$n=n, k=n$$

Suppose we have n people. The total number of ways I can rearrange these n people in a line is

$$N \cdot (n-1) \cdot (n-2) \cdot (n-3) - \cdots (2) \cdot (1)$$

This is consistent with the formula

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!$$

$$0 = \frac{n!}{1} = \frac{n!}{1} = n!$$

## **Combinations**

- A **combination** is a set of *k* items selected from a group of *n* possible elements **without replacement**, such that **order does not matter**.
- Example: There are 24 ice cream flavors. How many ways can you pick two different flavors?

How many 2-flavor Combination?

1. Count permutations
Where order = True

2. adjust the # of possibilities
Where order doesn't

-> order doesn't matter



24 many pairs of 24 do I have?

23=11.5 total = 11.5.24 = 3.24

24 flavors m total, How many 3-flavor com

How many possible ways com I

P(24,3) = 24:

re-arrange 3-flavor? 31

## From permutations to combinations

- There is a close connection between:
  - ► the number of permutations of *k* elements selected from a group of *n*, and
  - the number of combinations of k elements selected from a group of n

# combinations = 
$$\frac{\text{# permutations}}{\text{# orderings of } k \text{ items}}$$

Since # permutations =  $\frac{n!}{(n-k)!}$  and # orderings of k items = k!, we have

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

#### **Combinations**

In general, the number of ways to select k elements from a group of n elements such that **repetition is not allowed** and **order does not matter** is

False 
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The symbol  $\binom{n}{k}$  is pronounced "n choose k", and is also known as the **binomial coefficient**.

# **Example: committees**

How many ways are there to select a president, vice president, and secretary from a group of 8 people?

How many ways are there to select a committee of 3 people from a group of 8 people?

If you're ever confused about the difference between permutations and combinations, come back to this example.

#### **Discussion Question**

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face.

How many dominoes are in the set of dominoes?

- a)  $\binom{7}{2}$
- b)  $\binom{7}{1} + \binom{7}{2}$
- c) P(7,2)
- d)  $\frac{P(7,2)}{P(7,1)}$ 7

# **Summary**

#### **Summary**

- A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
  - Number of sequences:  $n^k$ .
- ► A **permutation** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order matters.
  - Number of permutations:  $P(n, k) = \frac{n!}{(n-k)!}$ .
- ► A **combination** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order does not matter.
  - Number of combinations:  $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ .