
Lecture 17 - Sequences, Permutations, and
Combinations

DSC 40A, Winter 2024



Announcements
▶ Homework 5 is due Tonight.

▶ Please come to office hours if you have questions!

▶ Important: We’ve posted many probability resources on
the resources tab of the course website. These will no
doubt come in handy.
▶ No more DSC 40A-specific readings, though the
Probability Roadmap was written specifically for
students of this course.

https://dsc40a.com/resources/##probability




Agenda

▶ Sequences, permutations, and combinations.



Sequences, permutations, and combinations



Motivation

▶ Many problems in probability involve counting.
▶ Suppose I flip a fair coin 100 times. What’s the
probability I see 34 heads?

▶ Suppose I draw 3 cards from a 52 card deck. What’s
the probability they all are all from the same suit?

▶ In order to solve such problems, we first need to learn
how to count.

▶ The area of math that deals with counting is called
combinatorics.



Selecting elements (i.e. sampling)
▶ Many experiments involve choosing 𝑘 elements randomly
from a group of 𝑛 possible elements. This group is called
a population.
▶ If drawing cards from a deck, the population is the
deck of all cards.

▶ If selecting people from DSC 40A, the population is
everyone in DSC 40A.

▶ Two decisions:
▶ Do we select elements with or without replacement?
▶ Does the order in which things are selected matter?



Sequences
▶ A sequence of length 𝑘 is obtained by selecting 𝑘
elements from a group of 𝑛 possible elements with
replacement, such that order matters.

▶ Example: Draw a card (from a standard 52-card deck), put
it back in the deck, and repeat 4 times.

▶ Example: A UCSD PID starts with “A” then has 8 digits.
How many UCSD PIDs are possible?



Sequences

In general, the number of ways to select 𝑘 elements from a
group of 𝑛 possible elements such that repetition is allowed
and order matters is 𝑛𝑘.

(Note: We mentioned this fact in the lecture on clustering!)



Permutations
▶ A permutation is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order matters.

▶ Example: Draw 4 cards (without replacement) from a
standard 52-card deck.

▶ Example: How many ways are there to select a president,
vice president, and secretary from a group of 8 people?



Permutations

▶ In general, the number of ways to select 𝑘 elements from
a group of 𝑛 possible elements such that repetition is not
allowed and order matters is

𝑃(𝑛, 𝑘) = (𝑛)(𝑛 − 1)...(𝑛 − 𝑘 + 1)

▶ To simplify: recall that the definition of 𝑛! is

𝑛! = (𝑛)(𝑛 − 1)...(2)(1)

▶ Given this, we can write

𝑃(𝑛, 𝑘) = 𝑛!
(𝑛 − 𝑘)!



Discussion Question

UCSD has 7 colleges. How many ways can I rank my top
3 choices?
a) 21
b) 210
c) 343
d) 2187
e) None of the above.



Special case of permutations

▶ Suppose we have 𝑛 people. The total number of ways I
can rearrange these 𝑛 people in a line is

▶ This is consistent with the formula

𝑃(𝑛, 𝑛) = 𝑛!
(𝑛 − 𝑛)! =

𝑛!
0! =

𝑛!
1 = 𝑛!



Combinations
▶ A combination is a set of 𝑘 items selected from a group of
𝑛 possible elements without replacement, such that
order does not matter.

▶ Example: There are 24 ice cream flavors. How many ways
can you pick two different flavors?







From permutations to combinations
▶ There is a close connection between:

▶ the number of permutations of 𝑘 elements selected
from a group of 𝑛, and

▶ the number of combinations of 𝑘 elements selected
from a group of 𝑛

# combinations = # permutations
# orderings of 𝑘 items

▶ Since # permutations = 𝑛!
(𝑛−𝑘)! and

# orderings of 𝑘 items = 𝑘!, we have

𝐶(𝑛, 𝑘) = (𝑛𝑘) =
𝑛!

(𝑛 − 𝑘)!𝑘!



Combinations
In general, the number of ways to select 𝑘 elements from a
group of 𝑛 elements such that repetition is not allowed and
order does not matter is

(𝑛𝑘) =
𝑛!

(𝑛 − 𝑘)!𝑘!

The symbol (𝑛𝑘) is pronounced “𝑛 choose 𝑘”, and is also known
as the binomial coefficient.



Example: committees

▶ How many ways are there to select a president, vice
president, and secretary from a group of 8 people?

▶ How many ways are there to select a committee of 3
people from a group of 8 people?

▶ If you’re ever confused about the difference between
permutations and combinations, come back to this
example.



Discussion Question

A domino consists of two faces, each with anywhere be-
tween 0 and 6 dots. A set of dominoes consists of every
possible combination of dots on each face.
How many dominoes are in the set of dominoes?
a) (72)
b) (71) + (

7
2)

c) 𝑃(7, 2)
d) 𝑃(7,2)

𝑃(7,1)7!



Summary



Summary

▶ A sequence is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements with replacement, such that
order matters.
▶ Number of sequences: 𝑛𝑘.

▶ A permutation is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order matters.
▶ Number of permutations: 𝑃(𝑛, 𝑘) = 𝑛!

(𝑛−𝑘)! .

▶ A combination is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order does not matter.
▶ Number of combinations: (𝑛𝑘) =

𝑛!
(𝑛−𝑘)!𝑘! .


