Lecture 18 - Probabability and Combinatorics

 Examples

DSC 40A, Winter 2024

Announcements

- Homework 6 is posted and due next Wednesday.
- HDSI undergrad \& faculty mixer will be this afternoon 3-5pm at HDSI patio
\checkmark Light refreshment will be provided

Agenda

- Invited Algorithm Presentation
- Review of combinatorics.
- Lots of examples.

Invited Algorithm Presentation: Owen Shi

HW4 Algorithm

Owen Shi

In [5]: waveforms.plot(kind='scatter', $x=$ 'Max_Amp', $y={ }^{\prime}$ 'Energy');

In [4]:
waveforms = pd.read_csv('HPGeData.csv') waveforms.head()

Out[4]:

	Max_Amp	tDrift50	tDrift90	tDrift100	blnoise	tslope
$\mathbf{0}$	1233.0	61.0	69.0	81.0	11.5110	-108.1349
$\mathbf{1}$	1319.0	93.0	116.0	135.0	3.7505	-112.9078
$\mathbf{2}$	1237.0	81.0	89.0	104.0	2.3472	-111.2230
$\mathbf{3}$	4469.0	90.0	98.0	112.0	1.8966	-111.4219
$\mathbf{4}$	796.0	84.0	95.0	117.0	2.9256	-123.4542

In [6]: waveforms.plot(kind='scatter', $x=$ 'tDrift50', $y={ }^{\prime}$ 'Energy');

In [11]: waveforms.plot(kind='scatter', $x=$ 'tslope', $y={ }^{\prime}$ 'Energy');

The Framework

In [5]: def design matrix(d)

```
                df = d.copy()
            df['Intercept'] = 1
            feat1 = (1 / df['blnoise']**2 + 1 / df['tslope']) / df['Max_Amp']
            feat2 = (1 / df['blnoise'])**1.5 / (df['Max_Amp'] + df['blnoise']**3)
    feat3 = (df['Max_Amp'] * df['blnoise'] * df['tslope']) /\
            (df['Max_Amp']**2 + 1/df['blnoise'] + / / df['tslope'])
    df['feat1'] = feat1
    df['feat2'] = feat2
    df['feat3'] = feat3
    # df.plot(kind='scatter', y='Energy', x='feat3')
        return df.get(['Intercept', 'Max_Amp', 'feat1', 'feat2', 'feat3']).to_numpy()
    design_matrix(waveforms)
```

In [31]: np.random.seed(10)
lambdas =np.logspace (-10, 10, 100)
mses $=$ [
for 1 in lambdas:
mse $=$
$w=w_{-} \operatorname{star}(1)$
for i in range(waveforms. shape [0]):
row = waveforms.iloc[i]
feat1 $=1 / \operatorname{row}[4]+1 /$ row[5]
feat $2=1 / \operatorname{row}[5] * 1 /$ feat1
$X=$ pd.Series([1, row[0$]$, feat1, feat2])
pred $=X$ X w
mse $+=$ (pred $-\operatorname{row}[$ 'Energy']) **
mse += (pred - row[
mse / = waveforms
mses.append (mse)
lambdas[np.argmin(mses)]
[7]: def w_star(lam):
X = design_matrix(waveforms)
$y=$ observation_vector()
return np.linalg.inv(X.T @ X + lam * np.eye(X.shape[1])) @ X.T @ y
Out[31]: 4.132012400115335e-09

In [6]: def observation_vector():
return waveforms['Energy']
lambdas $=$ np.logspace $(-10,10,100)$
mses = [
$\mathrm{mse}=0$
$w=w_{1}$ star (l)
row = waveforms.iloc[i]
feat2 $=1 / \operatorname{row}[5] * 1 /$ feat1
$\mathrm{X}=\mathrm{pd}$. Series ([1, row[0], feat1, feat2])
mse += (pred - row['Energy']) ** 2
mses. append (mse)
lambdas[np.argmin(mses)]
[7]: def w_star(lam):
X = design_matrix(waveforms)
$y=$ observation_vector()
return np.linalg.inv(X.T @ X + lam * np.eye(X.shape[1])) @ X.T @ y

```
def design_matrix(d)
```

$\mathrm{df}=\mathrm{d} . \operatorname{copy}()$
df['Intercept'] = 1
return df.get(['Intercept', 'Max_Amp']).to_numpy()

```
def design_matrix(d):
    df = d.copy()
    df['Intercept'] = 1
    feat1 = 1 / df['blnoise']
    feat2 = 1 / df['tslope']
    df['feat1'] = feat1
    df['feat2'] = feat2
    return df.get(['Intercept', 'Max_Amp', 'feat1', 'feat2']).to_numpy()
```

def design_matrix(d):
$\mathrm{df}=\mathrm{d} \cdot \operatorname{copy}()$
$\mathrm{df}[$ 'Intercept'] $=1$
feat1 = $1 / \mathrm{df}[$ 'blnoise'] $+1 / \mathrm{df}[$ 'tslope']
feat2 = 1 / df['tslope'] * 1 / (1 / df['blnoise'] + 1 / df['tslope'])
feat3 $=\mathrm{df}[$ 'tslope'] / df['Max Amp']
$d f[$ 'feat1'] = feat1
$d f[$ 'feat2'] = feat2
df['feat3'] = feat3
return df.get(['Intercept', 'Max_Amp', 'feat1', 'feat2', 'feat3']).to_numpy()

```
def design_matrix(d):
                df = d.copy()
                df['Intercept'] = 1
                feat1 = (1 / df['blnoise'] + 1 / df['tslope']) / df['Max_Amp']
                feat2 = df['Max_Amp'] / df['blnoise']
                feat3 = df['Max_Amp'] / df['tslope']
                            df['feat1'] = feat1
                            df['feat2'] = feat2
                            df['feat3'] = feat3
                            return df.get(['Intercept', 'Max_Amp', 'feat1', 'feat2', 'feat3']).to_numpy()
```


Submission History

$$
\begin{aligned}
& \text { } \text { without_f1 }=793.7921119778865 \\
& \text { without_f2 }=766.2772193373274 \\
& \text { without_f3 }=727.4278430354087
\end{aligned}
$$

In [5]: def design_matrix(d):
$d f=d$. copy ()
df['Intercept'] = 1
feat1 $=\left(1 / \mathrm{df}\left[\right.\right.$ 'blnoise' ${ }^{* *} 2+1 / \mathrm{df}[$ 'tslope'] $) / \mathrm{df}[$ 'Max_Amp']
feat $2=\left(1 / d f\left[' b l n o i s e^{\prime}\right]\right)^{* *} 1.5 /\left(d f\left[' M a x _A m p '\right]+d f\left[' b l n o i s e^{\prime}\right] * * 3\right)$
feat3 $=(\mathrm{df}[$ 'Max_Amp'] * df['blnoise'] * df['tslope']) / \} (df['Max_Amp']**2 + $1 / \mathrm{df}[$ 'blnoise'] $+1 / \mathrm{df}[$ 'tslope'])
$d f[$ 'feat1'] = feat1
df['feat2'] = feat2
df['feat3'] = feat3
\# df.plot(kind='scatter', $y=$ 'Energy', $x=$ 'feat3')
return df.get(['Intercept', 'Max_Amp', 'feat1', 'feat2', 'feat3']).to_numpy()
design_matrix(waveforms)

One More Extra Credit Opportunity

- Building a Naive Bayes classifier to separate neutrino signals from unwanted noises!
- This one will be Optional: chances to earn extra credit, but does not count as part of homework problem.
- Will be released and due together wit HW7
- More details in the following weeks.
- The full HPGe dataset is released at https://zenodo.org/records/8257027
- In raw waveform format, no extracted parameters.

Extra Credit Rules

- The classifier competition will earn you up to 10\% extra credit on Midterm 2, depending on your leaderboard ranking
- Same as the energy regression challenge
- However, the maximum extra credit you can earn from both challenges is capped at 10%
- Example: Owen ranked No. 2 on regression challenge, he will get 9\% EC on Midterm 1, so the maximum amount of EC he can get on Midterm 2 is 1%
- This is to encourage students who did not get EC from the regression challenge to participate.

Review of combinatorics

Combinatorics as a tool for probability

- If S is a sample space consisting of equally-likely outcomes, and A is an event, then $P(A)=\frac{|A|}{|S|}$.
- In many examples, this will boil down to using permutations and/or combinations to count $|A|$ and $|S|$.
- Tip: Before starting a probability problem, always think about what the sample space S is!

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: You roll a die 10 times. How many different sequences of results are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that repetition is allowed and order matters is

$$
n^{k}
$$

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

- In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$
\begin{aligned}
P(n, k) & =(n)(n-1) \ldots(n-k+1) \\
& =\frac{n!}{(n-k)!}
\end{aligned}
$$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- Example: How many ways are there to select a committee of 3 people from a group of 8 people?

Combinations

In general, the number of ways to select k elements from a group of n elements such that repetition is not allowed and order does not matter is

$$
\begin{aligned}
C(n, k) & =\binom{n}{k} \\
& =\frac{P(n, k)}{k!} \\
& =\frac{n!}{(n-k)!k!}
\end{aligned}
$$

The symbol $\binom{n}{k}$ is pronounced " n choose k ", and is also known as the binomial coefficient.

Lots of examples

Discussion Question

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face. How many dominoes are in the set of dominoes?
a) $\binom{7}{2}$
b) $\binom{7}{1}+\binom{7}{2}$
c) $P(7,2)$
d) $\frac{P(7,2)}{P(7,1)} 7$!

Selecting students - overview

We're going answer the same question using several different techniques.

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 1: using permutations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 2: using permutations and the complement)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 3: using combinations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 3: using combinations)

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals could you draw?

Selecting students (Method 3: using combinations)

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals include Avi?

Selecting students (Method 3: using combinations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 4: "the easy way")

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

With vs. without replacement

Discussion Question

We've determined that a probability that a random sample of 5 students from a class of 20 without replacement contains Avi (one student in particular) is $\frac{1}{4}$.
Suppose we instead sampled with replacement. Would the resulting probability be equal to, greater than, or less than $\frac{1}{4}$?
a) Equal to
b) Greater than
c) Less than

Summary

Summary

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
\downarrow Number of sequences: n^{k}.

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.

