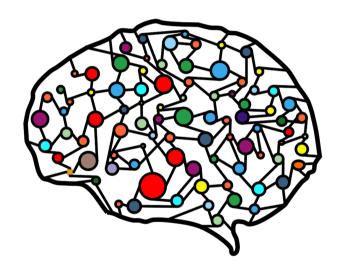
Lecture 19 - More Probability and Combinatorics Examples



DSC 40A, Winter 2024

Announcements

- Discussion is tonight.
- Homework 6 has been released, due Wednesday at 11:59pm.
- ► Homework 7 (last HW) will be released this Friday along with the second Extra Credit opportunity.

Agenda

Lots of examples.

Selecting students — overview

We're going answer the same question using several different techniques.

All students are equally likely

Question 1: There are 20 students in a class. Av is one of

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Description of the Solve this with order-strue.

D(n,k)

Give 'names' to all students:

A B CD - - - I = 20 students

No. 1

Selecting students (Method 1: using permutations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random **without replacement**. What is the probability that Avi is among the 5 selected students?

Numerator: If of permutations including A ex). ACJTE -> 1×19×18×17×16 1x 19x18x7x16 5.19.18.17-16 = 5. P(19,4)

Selecting students (Method 2: using permutations and the complement)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random **without replacement**. What is the probability that Avi is among the 5 selected students?

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random **without replacement**. What is the probability that Avi is among the 5 selected students?

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals could you draw?

The many different sets of individuals could you draw?

sets of 5 students:
$$(29,5) = (5)$$
 $= \frac{29}{15!5!}$

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals include Avi?

sets include Avi

$$N=19$$
 $C(N,k)=C(19.4)$
 $k=4$
 $C(19.4)$
 $C(19.4)$

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random **without replacement**. What is the probability that Avi is among the 5 selected students?

$$\frac{C(19,4)}{C(20,5)} = \frac{19!}{15!4!} = \frac{19!}{15!5!} \times \frac{15!5}{20!}$$

$$= \frac{19!}{15!5!} \times \frac{15!5}{20!}$$

$$= \frac{19!}{20!} \cdot \frac{5!}{4!} = \frac{1}{20} \cdot 5 = \frac{1}{4}$$

Selecting students (Method 4: "the easy way")

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random **without replacement**. What is the probability that Avi is among the 5 selected students?

With vs. without replacement

Sampling 20 instead of 5 students

Discussion Question

We've determined that a probability that a random sample of 5 students from a class of 20 without replacement contains Avi (one student in particular) is $\frac{1}{4}$.

Suppose we instead sampled with replacement. Would the resulting probability be equal to, greater than, or less than $\frac{1}{4}$?

- a) Equal to
- b) Greater than
- c) Less than

Replacement Folse:
PLAvi)=1
Postruement True:

PCAvi)<

Art supplies

Question 2, Part 1: We have 12 art supplies: 5 markers and 7 crayons. In how many ways can we select 4 art supplies?

$$\begin{pmatrix} 12 \\ 4 \end{pmatrix} = \begin{pmatrix} 12 \\ 4 \end{pmatrix}$$

Art supplies

Question 2, Part 2: We have 12 art supplies: 5 markers and 7 crayons. In how many ways can we select 4 art supplies such that we have...

- 1. 2 markers and 2 crayons?
- 2. 3 markers and 1 crayon?

3 t-shirt * 2 points = 6 outfits

$$C(5,3) = C(5,2) \quad C(n,h-k)$$

$$n! \quad n \in \mathbb{N}$$

$$C(n,k) = \frac{h!}{k!(n-k)!} \quad (n-k)! \quad k!$$

Art supplies

Question 2, Part 3: We have 12 art supplies: 5 markers and 7 crayons. We randomly select 4 art supplies. What's the probability that we selected at least 2 markers?

S = all sets of 4 art supplies

$$|S| = (12,4)$$

all equally likely.

Prob(at least 2 markers)

= # wows to choose 4 art supplies

= (12,4) - (12,4)

 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$
 $(12,4)$

Question 3: Suppose we flip a fair coin 10 times.

1. What is the probability that we see the specific sequence THTTHTHHTH?

What is the probability that we see an equal number of heads and tails?

Unfair coin

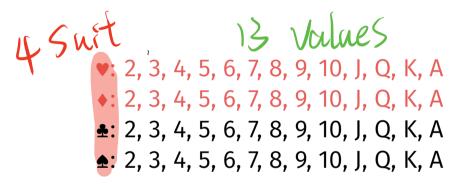
Question 4: Suppose we flip an **unfair coin** 10 times. The coin is biased such that for each flip, $P(\text{heads}) = \frac{1}{3}$.

- 1. What is the probability that we see the specific sequence THTTHTHTH?
- 2. What is the probability that we see an equal number of heads and tails?

P(H)=1/3, Air 10 times, Prob(54.5T)

Deck of cards

There are 52 cards in a standard deck (4 suits, 13 values).



In poker, each player is dealt 5 cards, called a hand. The order of cards in a hand does not matter.

Deck of cards

1. How many 5 card hands are there in poker?

Card hands are there in poker?

$$(52.5)$$

$$(52.12.11.10.9)$$

$$(52.12.11.10.9)$$

2. How many 5 card hands are there where all cards are of the same suit (a flush)?

4. How many 5 card hands are there that have a **straight** (all card values consecutive)?

5. How many 5 card hands are there that are a **straight flush** (all card values consecutive and of the same suit)?

6. How many 5 card hands are there that include exactly **one** pair (values aabcd)?

Summary

Summary

- A **sequence** is obtained by selecting *k* elements from a group of *n* possible elements with replacement, such that order matters.
 - Number of sequences: n^k .
- ► A **permutation** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order matters.
 - Number of permutations: $P(n, k) = \frac{n!}{(n-k)!}$.
- ► A **combination** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order does not matter.
 - Number of combinations: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.