Lecture 19 - More Probability and Combinatorics

 Examples

DSC 40A, Winter 2024

Announcements

- Discussion is tonight.
- Homework 6 has been released, due Wednesday at 11:59pm.
- Homework 7 (last HW) will be released this Friday along with the second Extra Credit opportunity.

Agenda

Lots of examples.

Selecting students - overview
We're going answer the same question using several different techniques.

All students are equally likely
Question 1: There are 20 students in a class. Av is one of be select them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

False
(1) Solve this with Order \rightarrow True.
$p(n, k)$
Give "names" to all students:

$$
\begin{aligned}
& \text { 'hames' to' all students. } \\
& A^{\prime} B C D \ldots . . T=20 \text { students } \\
& A_{\text {Avi }}
\end{aligned}
$$

Selecting students (Method 1: using permutations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?
$S=$ a permutathon (ordered selection) of 5 students chosen from $A, B \ldots T$

$$
e x) ~ L P F G A, \text { LFGAT.... }
$$

$$
\begin{aligned}
& 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \\
&=P(20,5)
\end{aligned}
$$

Numerator: \# of permutations inducing A. ex). ACJTE

$$
\begin{aligned}
& \text { A — — - } \\
& \text { - A — - } 35 \\
& \ldots A_{A}=5 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \\
& \ldots \ldots A \\
& \text { total \# of perm } \\
& =5 \cdot P(19,4)
\end{aligned}
$$

Selecting students (Method 2: using permutations and the complement)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

$$
\begin{aligned}
& \text { is among the } 5 \text { selected students? } \\
& \begin{array}{c}
\text { \# Perms including } A \\
\text { total \# Perms }
\end{array}=\frac{\text { total \# of Perms - Perms }}{\text { not inside } A} \\
& \text { total \# of Perms }
\end{aligned}
$$

Selecting students (Method 3: using combinations)

$$
\text { order }=\text { False }
$$

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?
$S=$ set of 5 students, chosen from A.B.-T

$$
\begin{aligned}
& \text { ex }\{B, D, G, H, M\} \\
& P(A \text { included })=\frac{\text { of sets of } 5 \text { strides indingig } A}{\# \text { of sets of } 5 \text { students }}
\end{aligned}
$$

Selecting students (Method 3: using combinations)

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals could you draw?
\# sets of 5 students: $C(20,5)=\binom{20}{5}$

$$
=\frac{2!}{15!5!}
$$

Selecting students (Method 3: using combinations)

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals include Avi?

* Sets induce Avi

$$
\begin{aligned}
& n=19 \quad C(n, k)=C(19,4) \\
& k=4
\end{aligned}
$$

Selecting students (Method 3: using combinations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 4: "the easy way")

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

With vs. without replacement

Discussion Question

We've determined that a probability that a random sample of 5 students from a class of 20 without replacement contains Avi (one student in particular) is $\frac{1}{4}$.
Suppose we instead sampled with replacement. Would the resulting probability be equal to, greater than, or less than $\frac{1}{4}$?
a) Equal to
b) Greater than
c) Less than

Art supplies

Question 2, Part 1: We have 12 art supplies: 5 markers and 7 crayons. In how many ways can we select 4 art supplies?

Art supplies

Question 2, Part 2: We have 12 art supplies: 5 markers and 7 crayons. In how many ways can we select 4 art supplies such that we have...

1. 2 markers and 2 crayons?
2. 3 markers and 1 crayon?

Art supplies

Question 2, Part 3: We have 12 art supplies: 5 markers and 7 crayons. We randomly select 4 art supplies. What's the probability that we selected at least 2 markers?

Fair coin

Question 3: Suppose we flip a fair coin 10 times.

1. What is the probability that we see the specific sequence THTTHTHHTH?
2. What is the probability that we see an equal number of heads and tails?

Unfair coin

Question 4: Suppose we flip an unfair coin 10 times. The coin is biased such that for each flip, P (heads) $=\frac{1}{3}$.

1. What is the probability that we see the specific sequence THTTHTHHTH?
2. What is the probability that we see an equal number of heads and tails?

Deck of cards

- There are 52 cards in a standard deck (4 suits, 13 values).

$$
\begin{aligned}
& \text { v: } 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& : 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& \pm: 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& \text { a: } 2,3,4,5,6,7,8,9,10, J, Q, K, A
\end{aligned}
$$

- In poker, each player is dealt 5 cards, called a hand. The order of cards in a hand does not matter.

Deck of cards

1. How many 5 card hands are there in poker?
2. How many 5 card hands are there where all cards are of the same suit (a flush)?
3. How many 5 card hands are there that include a four-of-a-kind (four cards of the same value)?
4. How many 5 card hands are there that have a straight (all card values consecutive)?
5. How many 5 card hands are there that are a straight flush (all card values consecutive and of the same suit)?
6. How many 5 card hands are there that include exactly one pair (values aabcd)?

Summary

Summary

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
\downarrow Number of sequences: n^{k}.

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.

