Lecture 25 - Precision and Recall

DSC 40A, Winter 2024

Announcements

- Midterm 2 is Wednesday 3/13 during lecture.
- I'm travelling from next Tuesday to Saturday, Prof. Gal Mishne will proctor the midterm on 3/13.
- Next week we have two review sessions, one is Monday discussion (for Midterm 2), one is Friday lecture (for Final)
 Zhenduo (TA) and tutors will lead both sessions.
 - I've asked TA/tutor to move their OH to Monday/Tuesday.

Announcements

- Final is on March 22, Final part I/Part II is replacable with midterm 1/midterm 2, respectively.
 - See more announcements about final on Course Website/Campuswire.
 - Final will be more multiple choice/fill in the blank style
- Please fill out Student Evaluation of Teaching:
 - https://academicaffairs.ucsd.edu/Modules/ Evals?e11210304
 - If at least 80% of the enrolled students fill out this survey, everyone in this class will get 0.5% extra credit on their final grade.

About Midterm 2

You'll be allowed an unlimited number of handwritten note sheets for Midterm 2. Start studying and preparing your notes now!

Has to be handwritten, no printed notes.

- Midterm 2 covers lecture 13-24. Clustering is included, but the vast majority will be probability and combinatorics.
- No calculators.
 - There will be some numerical calculations, but no very hard ones.
- Assigned seats will be posted on Campuswire.
- We will not answer questions during the exam. State your assumptions if anything is unclear.

Midterm 2 Preparation Strategy

- One useful strategy is attributing complicated real-world problems into known models.
 - Example: rolling a die
- Unlike Part I of this course which is mostly proof, in Part II we have done lots of examples in lecture, make sure you understand them. If not, please ask questions in OH/Campuswire.
 - > You will see something similar in the exam.
- Everything I covered in the lecture 13-24 is possible to appear in the midterm.

Agenda

- Recap: Text classification with Naive Bayes
- Measuring quality of classification

Text classification

Recap: Naive Bayes for spam classification

To classify an email, we'll use Bayes' theorem to calculate the probability of it belonging to each class:

 $P(\text{spam} \mid \text{features}) = \frac{P(\text{spam}) \cdot P(\text{features} \mid \text{spam})}{P(\text{features})}$ $P(\text{ham} \mid \text{features}) = \frac{P(\text{ham}) \cdot P(\text{features} \mid \text{ham})}{P(\text{features})}$

- We'll find the larger probability by comparing numerators, and predict that class.
- To compute the numerator, we make the naive assumption that the features are conditionally independent given the class.

Concrete example

- Dictionary: "prince", "money", "free", and "just".
- Dataset of 5 emails (red are spam, green are ham):
 - "I am the prince of UCSD and I demand money."
 "Tapioca Express: redeem your free Thai Iced Tea!"
 "DSC 10: free points if you fill out CAPEs!"
 - "DSC 10: free points if you fill out CAPEs!"
 "Click here to make a tax-free donation to the IRS."
 - "Free career night at Prince Street Community Center."

Concrete example

What happens if we try to classify the email "just what's your price, prince"?

Smoothing

Without smoothing:

 $P(x^{(i)} = 1 | \text{spam}) \approx \frac{\# \text{spam containing word } i}{\# \text{spam containing word } i + \# \text{spam not containing word } i}$

With smoothing:

 $P(x^{(i)} = 1 \mid \text{spam}) \approx \frac{(\# \text{ spam containing word } i) + 1}{(\# \text{ spam containing word } i) + 1 + (\# \text{ spam not containing word } i) + 1}$

When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Concrete example with smoothing

What happens if we try to classify the email "just what's your price, prince"?

Modifications and extensions

- Idea: Use pairs (or longer sequences) of words rather than individual words as features.
 - This better captures the dependencies between words.
 - It also leads to a much larger space of features, increasing the complexity of the algorithm.

Modifications and extensions

- Idea: Use pairs (or longer sequences) of words rather than individual words as features.
 - This better captures the dependencies between words.

It also leads to a much larger space of features, increasing the complexity of the algorithm.

- Idea: Instead of recording whether each word appears, record how many times each word appears.
 - This better captures the importance of repeated words.

Measuring quality of classification

¹taken from Joseph Gonzalez at UC Berkeley

Classification problems

- In the classification problem, we make predictions based on data (called training data) for which we know the value of the categorical response variable.
- Example classification problems:
 - Deciding whether a patient has kidney disease.
 - Identifying handwritten digits.
 - Determining whether an avocado is ripe.
 - Predicting whether credit card activity is fraudulent.

Assessing the quality of a classifier

- Naive Bayes is one classification algorithm, or classifier, but there are many others.
- Is Naive Bayes any good? How do we measure how good of a job a classifier does?

Discussion Question

Think back to regression (supervised learning with a quantitative response variable). How did we measure the quality of our predictions? Can we adopt a similar strategy?

Unseen data

- A natural way to measure the quality of our classifications is to see how often we predict the right category.
- We want to make good predictions on unseen data. So we'll measure how often we classify examples correctly for a new set of test data.
- This avoids overfitting.

2

²Park, Hochong Son, Joo-Hiuk. (2021). Machine Learning Techniques for THz Imaging and Time-Domain Spectroscopy. Sensors. 21. 1186. 10.3390/s21041186.

Accuracy

- Classification accuracy is the proportion of examples in the test set that are correctly classified.
- Accuracy is measured on a 0 to 1 scale.

Accuracy

We can think of accuracy as an estimate for the probability of making a correct classification on an unseen example.

Parameter:

P(successful classification)

Estimate:

accuracy = $\frac{\text{# correctly classified examples in test set}}{\text{size of test set}}$

Imbalanced classes

Alagille syndrome is a rare genetic condition that affects 1 in 40,000 people. We want to classify people as having this condition (**unhealthy**) or not having this condition (**healthy**).

Discussion Question

Consider a classifier that classifies everyone as **healthy**. 1. What is the accuracy of this classifier?

2. What are the ethical repercussions of using this classifier?

High accuracy is not enough

- We want to avoid overdiagnosis (telling someone they have the condition when they don't).
- We also want to avoid underdiagnosis (telling someone they're healthy when they're not).
- It's easy to avoid either one of these. It's hard to avoid both of these simultaneously, yet a good classifier should do exactly that.

Different types of errors

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

means a person is _____ly classified as _____.

Avoid overdiagnosis

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

- How often does our prediction of the condition mean a person actually has the condition?
- Parameter:

P(actually unhealthy|classified as unhealthy)

Estimate:

precision = # people in test set correctly classified as unhealthy # people in test set classified as unhealthy

Avoid underdiagnosis

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

- How often do we identify those that actually have the condition?
- Parameter:

P(classified as unhealthy|actually unhealthy)

Estimate:

recall = # people in test set correctly classified as unhealthy # unhealthy people in test set

Precision vs. recall

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

Precision:

precision = $\frac{\# \text{ people in test set correctly classified as unhealthy}}{\# \text{ people in test set classified as unhealthy}}$ $= \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$

► Recall:

recall = $\frac{\text{# people in test set correctly classified as unhealthy}}{\text{# unhealthy people in test set}} = \frac{\text{true positives}}{\text{true positives}}$

Precision vs. recall

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

Discussion Question

Consider a classifier that classifies everyone as **healthy**.

- 1. What is the precision of this classifier?
- 2. What is the recall of this classifier?

Precision vs. recall

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

Discussion Question

Now consider a classifier that classifies everyone as **unhealthy**.

- 1. What is the precision of this classifier?
- 2. What is the recall of this classifier?

Combining precision and recall

- We want high precision and high recall, but it's hard to have both.
- Let's combine them into a single measurement.
- Does the average of precision and recall work well?

- Compare:
 - Classifier A (P = 0, R = 1)

Combining precision and recall

- Key insight: Two moderate values are better than two extremes. Use the product, which shrinks when either term in the product is small.
- New way of combining precision and recall: F-score

- Compare:
 - Classifier A (P = 0, R = 1)
 - Classifier B (P = 0.5, R = 0.6)

F-score

The F-score combines the precision and recall of a classifier in a single measurement.

> <u>2PR</u> P + R

• Higher F-score \Rightarrow better classifier.

Discussion Question

What would be the F-score of a "perfect classifier"?

Summary

Summary

- Accuracy is a simple way of measuring the quality of a classifier, but it can be misleading when classes are imbalanced.
- Precision and recall are two other ways of measuring the quality of a classifier, but they can be hard to achieve simultaneously.
- The F-score combines precision and recall into a single measurement that assesses the quality of a classifier on a 0 to 1 scale.

$$\frac{2PR}{P+R}$$