
DSC 40A Fall 2025 - Group Work Week 10
due Monday, Dec 1st at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

Problem 1.

The table below contains 12 short movie reviews that have been manually labeled as either positive (y = 1)
or negative (y = 0). For every review five binary features are recorded indicating whether the corresponding
word appears in the text:

review i great boring plot acting slow y
1 1 0 1 1 0 1
2 1 0 1 0 0 1
3 0 0 1 1 0 1
4 1 0 0 1 0 1
5 0 1 0 0 1 0
6 0 1 1 0 1 0
7 0 0 0 1 1 0
8 1 0 0 0 1 0
9 0 1 1 1 0 0
10 1 1 1 0 0 0
11 0 1 1 1 0 1
12 0 0 1 0 1 1

Let the feature vector X⃗ = (X(1), X(2), X(3), X(4), X(5)) correspond to the presence of the words great,
boring, plot, acting, slow, respectively, and let Y ∈ {0, 1} denote the sentiment class.

a) Compute the probabilities Pr ({Y = 1}) and Pr ({Y = 0}) from the table.

Solution: From the table, there are 12 reviews in total. The positive reviews (y = 1) are reviews

1, 2, 3, 4, 11, 12,

so there are 6 positives and hence 6 negatives. Therefore

Pr ({Y = 1}) = 6

12
=

1

2
, Pr ({Y = 0}) = 6

12
=

1

2
.

b) Consider a new review whose feature vector is

x⃗ =
[
1 0 1 0 1

]⊤
.
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Using the näıve Bayes classifier, compute the class likelihoods Pr
(
{Y = 0} | {X⃗ = x⃗}

)
and Pr

(
{Y = 1} | {X⃗ = x⃗}

)
.

If you need to use Laplace smoothing, clearly indicate why.

Solution: The näıve Bayes classifier uses

Pr
(
{Y = y | X⃗ = x⃗}

)
∝ Pr ({Y = y})

5∏
j=1

Pr
(
{X(j) = x(j) | Y = y}

)
,

assuming conditional independence of the features given Y .

We first compute the necessary conditional probabilities from the table.

Among the 6 positive reviews (Y = 1) we count:

Pr
(
{X(1) = 1 | Y = 1}

)
=

3

6
=

1

2
, Pr

(
{X(2) = 0 | Y = 1}

)
=

5

6
,

Pr
(
{X(3) = 1 | Y = 1}

)
=

5

6
, Pr

(
{X(4) = 0 | Y = 1}

)
=

2

6
=

1

3
,

Pr
(
{X(5) = 1 | Y = 1}

)
=

1

6
.

Among the 6 negative reviews (Y = 0) we count:

Pr
(
{X(1) = 1 | Y = 0}

)
=

2

6
=

1

3
, Pr

(
{X(2) = 0 | Y = 0}

)
=

2

6
=

1

3
,

Pr
(
{X(3) = 1 | Y = 0}

)
=

3

6
=

1

2
, Pr

(
{X(4) = 0 | Y = 0}

)
=

4

6
=

2

3
,

Pr
(
{X(5) = 1 | Y = 0}

)
=

4

6
=

2

3
.

For y = 1 we get

Pr
(
{Y = 1, X⃗ = x⃗}

)
= Pr ({Y = 1})

5∏
j=1

Pr
(
{X(j) = x(j) | Y = 1}

)
=

1

2
· 1
2
· 5
6
· 5
6
· 1
3
· 1
6

=
25

2592
.

For y = 0 we get

Pr
(
{Y = 0, X⃗ = x⃗}

)
= Pr ({Y = 0})

5∏
j=1

Pr
(
{X(j) = x(j) | Y = 0}

)
=

1

2
· 1
3
· 1
3
· 1
2
· 2
3
· 2
3

=
1

81
.

The normalizing constant is

Pr
(
{X⃗ = x⃗}

)
= Pr

(
{Y = 0, X⃗ = x⃗}

)
+ Pr

(
{Y = 1, X⃗ = x⃗}

)
=

1

81
+

25

2592
=

57

2592
.
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Thus the posterior probabilities are

Pr
(
{Y = 0 | X⃗ = x⃗}

)
=

1
81
57

2592

=
32

57
≈ 0.56, Pr

(
{Y = 1 | X⃗ = x⃗}

)
=

25
2592
57

2592

=
25

57
≈ 0.44.

In this data set, every feature value (0 and 1) occurs at least once for each class, so none of the conditional
probabilities above is zero. Therefore Laplace smoothing is not needed for this example.

c) Which class does the classifier predict for this review?

Solution: Since

Pr
(
{Y = 0 | X⃗ = x⃗}

)
=

32

57
> Pr

(
{Y = 1 | X⃗ = x⃗}

)
=

25

57
,

the näıve Bayes classifier predicts class Y = 0, i.e., a negative review.

Problem 2.

Researchers on planet Zog are building a classifier that decides whether a brand new jelly bean is Yummy
(y = 1) or Yucky (y = 0). For each candy they record five quirky binary features:

Feature j Meaning of {X(j) = 1}
1 the bean glows in the dark (glow)
2 the bean fizzes when bitten (fizz)
3 the bean feels slimy (slimy)
4 the bean crunches loudly (crunch)
5 the bean whistles when shaken (whistle)

The training data of 14 beans are listed below.

bean i glow fizz slimy crunch whistle y
1 1 1 0 1 0 1
2 1 0 0 1 0 1
3 0 1 0 0 0 1
4 1 1 0 0 0 1
5 0 0 1 0 1 0
6 0 1 1 1 0 0
7 0 0 1 0 0 0
8 1 0 1 0 1 0
9 0 1 1 0 1 0
10 1 0 1 1 1 0
11 0 1 0 1 0 1
12 1 0 0 0 0 1
13 0 0 1 1 1 0
14 1 1 1 0 1 0

Let X⃗ = (X(1), . . . , X(5)) denote the five features and Y ∈ {0, 1} the label.

a) Compute the probabilities Pr ({Y = 1}) and Pr ({Y = 0}) from the table.

Solution: Counting labels in the table, there are 6 Yummy beans (y = 1) and 8 Yucky beans (y = 0)
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out of 14 total. Thus

Pr ({Y = 1}) = 6

14
=

3

7
, Pr ({Y = 0}) = 8

14
=

4

7
.

b) A brand-new jelly-bean has feature vector

x⃗ =
[
0 1 0 0 1

]⊤
(fizz+ whistle only).

Estimate the probabilities Pr
(
{Y = 0} | {X⃗ = x⃗}

)
and Pr

(
{Y = 1} | {X⃗ = x⃗}

)
. If you need to use Laplace

smoothing, clearly indicate why.

Solution: As before, the näıve Bayes classifier uses

Pr
(
{Y = y | X⃗ = x⃗}

)
∝ Pr ({Y = y})

5∏
j=1

Pr
(
{X(j) = x(j) | Y = y}

)
.

Look at the raw counts from the table:

• Among the 8 Yucky beans (Y = 0), all of them have slimy = 1, so

Pr
(
{X(3) = 0 | Y = 0}

)
= 0.

• Among the 6 Yummy beans (Y = 1), none have whistle = 1, so

Pr
(
{X(5) = 1 | Y = 1}

)
= 0.

Our new bean has X(3) = 0 and X(5) = 1, so with unsmoothed estimates we would get

Pr
(
{X⃗ = x⃗ | Y = 0}

)
= 0 and Pr

(
{X⃗ = x⃗ | Y = 1}

)
= 0,

leading to zero likelihood for both classes. This is clearly unreasonable, so we must use Laplace
smoothing.

For each class y and feature j, let Ny be the number of training beans with label y, and let N
(j)
1,y be the

number with X(j) = 1 and label y. With add-one smoothing for Bernoulli features,

Pr
(
{X(j) = 1 | Y = y}

)
=

N
(j)
1,y + 1

Ny + 2
, Pr

(
{X(j) = 0 | Y = y}

)
=

Ny −N
(j)
1,y + 1

Ny + 2
.
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For Y = 0 there are N0 = 8 beans, so the denominator is 8 + 2 = 10. Counting from the table:

(glow) N
(1)
1,0 = 3, ⇒ Pr

(
{X(1) = 0 | Y = 0}

)
=

3

5
, Pr

(
{X(1) = 1 | Y = 0}

)
=

2

5
;

(fizz) N
(2)
1,0 = 3, ⇒ Pr

(
{X(2) = 0 | Y = 0}

)
=

3

5
, Pr

(
{X(2) = 1 | Y = 0}

)
=

2

5
;

(slimy) N
(3)
1,0 = 8, ⇒ Pr

(
{X(3) = 0 | Y = 0}

)
=

1

10
, Pr

(
{X(3) = 1 | Y = 0}

)
=

9

10
;

(crunch) N
(4)
1,0 = 3, ⇒ Pr

(
{X(4) = 0 | Y = 0}

)
=

3

5
, Pr

(
{X(4) = 1 | Y = 0}

)
=

2

5
;

(whistle) N
(5)
1,0 = 6, ⇒ Pr

(
{X(5) = 0 | Y = 0}

)
=

3

10
, Pr

(
{X(5) = 1 | Y = 0}

)
=

7

10
.

For Y = 1 there are N1 = 6 beans, so the denominator is 6 + 2 = 8. Counting:

(glow) N
(1)
1,1 = 4, ⇒ Pr

(
{X(1) = 0 | Y = 1}

)
=

3

8
, Pr

(
{X(1) = 1 | Y = 1}

)
=

5

8
;

(fizz) N
(2)
1,1 = 4, ⇒ Pr

(
{X(2) = 0 | Y = 1}

)
=

3

8
, Pr

(
{X(2) = 1 | Y = 1}

)
=

5

8
;

(slimy) N
(3)
1,1 = 0, ⇒ Pr

(
{X(3) = 0 | Y = 1}

)
=

7

8
, Pr

(
{X(3) = 1 | Y = 1}

)
=

1

8
;

(crunch) N
(4)
1,1 = 3, ⇒ Pr

(
{X(4) = 0 | Y = 1}

)
=

1

2
, Pr

(
{X(4) = 1 | Y = 1}

)
=

1

2
;

(whistle) N
(5)
1,1 = 0, ⇒ Pr

(
{X(5) = 0 | Y = 1}

)
=

7

8
, Pr

(
{X(5) = 1 | Y = 1}

)
=

1

8
.

For x⃗ = (0, 1, 0, 0, 1)⊤ we obtain

Pr
(
{Y = 0, X⃗ = x⃗}

)
= Pr ({Y = 0}) Pr

(
{X(1) = 0 | Y = 0}

)
Pr

(
{X(2) = 1 | Y = 0}

)
Pr

(
{X(3) = 0 | Y = 0}

)
· Pr

(
{X(4) = 0 | Y = 0}

)
Pr

(
{X(5) = 1 | Y = 0}

)
=

4

7
· 3
5
· 2
5
· 1

10
· 3
5
· 7

10

=
18

3125
≈ 0.00576,

and

Pr
(
{Y = 1, X⃗ = x⃗}

)
= Pr ({Y = 1}) Pr

(
{X(1) = 0 | Y = 1}

)
Pr

(
{X(2) = 1 | Y = 1}

)
Pr

(
{X(3) = 0 | Y = 1}

)
· Pr

(
{X(4) = 0 | Y = 1}

)
Pr

(
{X(5) = 1 | Y = 1}

)
=

3

7
· 3
8
· 5
8
· 7
8
· 1
2
· 1
8

=
45

8192
≈ 0.00549.

The posterior probabilities are then

Pr
(
{Y = 0 | X⃗ = x⃗}

)
=

Pr
(
{Y = 0, X⃗ = x⃗}

)
Pr

(
{Y = 0, X⃗ = x⃗}

)
+ Pr

(
{Y = 1, X⃗ = x⃗}

) ≈ 0.00576

0.00576 + 0.00549
≈ 0.512,
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and
Pr

(
{Y = 1 | X⃗ = x⃗}

)
≈ 0.488.

So after Laplace smoothing, the model slightly favors class Y = 0.

c) Which class does the classifier predict for this jelly bean?

Solution: Since

Pr
(
{Y = 0 | X⃗ = x⃗}

)
≈ 0.512 > Pr

(
{Y = 1 | X⃗ = x⃗}

)
≈ 0.488,

the näıve Bayes classifier predicts Y = 0, i.e., the bean is Yucky.

Problem 3. Näıve Bayes as a linear classifier

Consider a binary classification problem with label Y ∈ {0, 1} and d binary features X⃗ = (X(1), . . . , X(d)),
where each X(j) ∈ {0, 1}. Assume the näıve Bayes model with {0, 1} features:

Pr ({Y = y}) = πy, Pr
(
{X(j) = 1 | Y = y}

)
= θj,y, j = 1, . . . , d, y ∈ {0, 1},

and that, conditional on Y , the features X(1), . . . , X(d) are independent.

a) Show that the “log-posterior odds” can be written as

log
Pr

(
{Y = 1 | X⃗ = x⃗}

)
Pr

(
{Y = 0 | X⃗ = x⃗}

) = w0 +

d∑
j=1

wjx
(j),

for suitable constants w0, w1, . . . , wd that depend only on (πy) and (θj,y). Give explicit formulas for w0 and
wj .

Solution: By Bayes’ rule and the näıve Bayes assumption,

Pr
(
{Y = y | X⃗ = x⃗}

)
∝ Pr ({Y = y})

d∏
j=1

Pr
(
{X(j) = x(j) | Y = y}

)
.

For Bernoulli features,

Pr
(
{X(j) = x(j) | Y = y}

)
= θ x(j)

j,y (1− θj,y)
1−x(j)

.

Thus

log
Pr

(
{Y = 1 | X⃗ = x⃗}

)
Pr

(
{Y = 0 | X⃗ = x⃗}

) = log
π1

π0
+

d∑
j=1

log
Pr

(
{X(j) = x(j) | Y = 1}

)
Pr

(
{X(j) = x(j) | Y = 0}

)
= log

π1

π0
+

d∑
j=1

log
θx

(j)

j,1 (1− θj,1)
1−x(j)

θx
(j)

j,0 (1− θj,0)1−x(j)
.
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For each j,

log
θx

(j)

j,1 (1− θj,1)
1−x(j)

θx
(j)

j,0 (1− θj,0)1−x(j)

= x(j) log
θj,1
θj,0

+ (1− x(j)) log
1− θj,1
1− θj,0

= log
1− θj,1
1− θj,0

+ x(j)

[
log

θj,1
θj,0

− log
1− θj,1
1− θj,0

]

= log
1− θj,1
1− θj,0

+ x(j) log
θj,1(1− θj,0)

θj,0(1− θj,1)
.

Plugging back in, the log-odds is

log
Pr

(
{Y = 1 | X⃗ = x⃗}

)
Pr

(
{Y = 0 | X⃗ = x⃗}

) = log
π1

π0
+

d∑
j=1

log
1− θj,1
1− θj,0

+

d∑
j=1

x(j) log
θj,1(1− θj,0)

θj,0(1− θj,1)
.

This has the desired linear form

w0 +

d∑
j=1

wjx
(j)

where

w0 = log
π1

π0
+

d∑
j=1

log
1− θj,1
1− θj,0

, wj = log
θj,1(1− θj,0)

θj,0(1− θj,1)
.

b) Conclude that the näıve Bayes classifier with Bernoulli features has a linear decision rule of the form

ŷ(x⃗) =

{
1 if w0 +

∑d
j=1 wjx

(j) ≥ 0,

0 otherwise.

Explain in words what this means geometrically about the decision boundary in {0, 1}d.

Solution: The decision rule predicts the class with larger posterior probability:

ŷ(x⃗) =

{
1 if Pr

(
{Y = 1 | X⃗ = x⃗}

)
≥ Pr

(
{Y = 0 | X⃗ = x⃗}

)
,

0 otherwise.

This is equivalent to

ŷ(x⃗) =


1 if log

Pr
(
{Y = 1 | X⃗ = x⃗}

)
Pr

(
{Y = 0 | X⃗ = x⃗}

) ≥ 0,

0 otherwise.

From part (a) we have

log
Pr

(
{Y = 1 | X⃗ = x⃗}

)
Pr

(
{Y = 0 | X⃗ = x⃗}

) = w0 +

d∑
j=1

wjx
(j),

so

ŷ(x⃗) =

{
1 if w0 +

∑d
j=1 wjx

(j) ≥ 0,

0 otherwise,
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as claimed.

If we view x⃗ as a point in Rd (even though its coordinates are restricted to {0, 1}), the set of points
satisfying

w0 +

d∑
j=1

wjx
(j) = 0

is an affine hyperplane. The classifier predicts 1 on one side of this hyperplane and 0 on the other side.
Thus, in the discrete cube {0, 1}d, the näıve Bayes classifier corresponds to a linear threshold decision
boundary: it separates the vertices of the cube into two classes using a single hyperplane.

c) Suppose for some feature j we have θj,1 = θj,0. Show that wj = 0 in this case and interpret this fact: what
does näıve Bayes do with a feature that is equally distributed in both classes?

Solution: From part (a),

wj = log
θj,1(1− θj,0)

θj,0(1− θj,1)
.

If θj,1 = θj,0, then
θj,1(1− θj,0) = θj,0(1− θj,1),

so the fraction inside the logarithm is 1 and hence

wj = log 1 = 0.

Therefore feature j does not appear in the decision rule:

w0 +

d∑
k=1

wkx
(k) does not depend on x(j).

In other words, if a feature has exactly the same conditional distribution in both classes (it is equally
likely to be 1 given Y = 0 as given Y = 1), then näıve Bayes assigns it zero weight and effectively
ignores it when making predictions. Such a feature carries no discriminative information about the
label in this model.
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