DSC 40A Fall 2025 - Group Work Week 10
due Monday, Dec 1st at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

Problem 1.

The table below contains 12 short movie reviews that have been manually labeled as either positive (y = 1)
or negative (y = 0). For every review five binary features are recorded indicating whether the corresponding
word appears in the text:

review ¢ | great boring plot acting slow |y
1 1 0 1 1 0 1
2 1 0 1 0 0 1
3 0 0 1 1 0 1
4 1 0 0 1 0 1
5 0 1 0 0 1 0
6 0 1 1 0 1 0
7 0 0 0 1 1 0
8 1 0 0 0 1 0
9 0 1 1 1 0 0
10 1 1 1 0 0 0
11 0 1 1 1 0 1
12 0 0 1 0 1 1

Let the feature vector X = (X(l),X(Q),X(3)7X(4),X(5)) correspond to the presence of the words great,
boring, plot, acting, slow, respectively, and let Y € {0, 1} denote the sentiment class.

a) Compute the probabilities Pr ({Y = 1}) and Pr ({Y = 0}) from the table.

Solution: From the table, there are 12 reviews in total. The positive reviews (y = 1) are reviews
1,2,3,4,11,12,

so there are 6 positives and hence 6 negatives. Therefore

Pr({Y =1))= =2 Pr({y =0})=1 =

b) Consider a new review whose feature vector is

F=[1 01 0 1].



Using the naive Bayes classifier, compute the class likelihoods Pr ({Y =0} {X = _’}) and Pr ({Y =1} {X = _’})

If you need to use Laplace smoothing, clearly indicate why.

Solution: The naive Bayes classifier uses
5 . .
Pr({y=y|X=7}) o« Pr( {y_y}H (X0 =20 |y =3),

assuming conditional independence of the features given Y.
We first compute the necessary conditional probabilities from the table.

Among the 6 positive reviews (Y = 1) we count:

Pr{x®=1]y=1}) = %:% Pr({X(Q):O|Y:1}>:%,
Pr({X<3>:1|Y=1}) % Pr({X(4):O|Y:1}>:%:7,
Pr({X5)—1|Y—1}>:é

Among the 6 negative reviews (Y = 0) we count:
Pr({X(l):1|Y:0}>:%:%7 Pr({X2)_0|Y_0}>:%:é’
<117 =)= b e oryon) 12
Pr({X(5):1|Y:0}):%:§.

For y =1 we get

5

For y = 0 we get

The normalizing constant is

125 57

Pr({Xzf}):Pr({Yzo,Xz*})+1%({Y:1,)Z=*}):§+m_m,




Thus the posterior probabilities are

32 25 925

L bl [
Pr({Y:O\X': *}) = S = =~ 056, Pr({Y:1|X:f}) = 22 - 2~ 044,
2592 2592

In this data set, every feature value (0 and 1) occurs at least once for each class, so none of the conditional
probabilities above is zero. Therefore Laplace smoothing is not needed for this example.

c) Which class does the classifier predict for this review?

Solution: Since
25

Pr({yzou?z*}):%>Pr({yz1|iz*}):§,

the naive Bayes classifier predicts class Y = 0, i.e., a negative review.

Problem 2.

Researchers on planet Z0OG are building a classifier that decides whether a brand new jelly bean is YuMMy
(y=1) or Yucky (y = 0). For each candy they record five quirky binary features:

Feature j Meaning of {X0U) =1}

the bean glows in the dark (glow)

the bean fizzes when bitten (fizz)

the bean feels slimy (slimy)

the bean crunches loudly (crunch)

5 the bean whistles when shaken (whistle)

[ENEUCR NG

The training data of 14 beans are listed below.

bean i | glow fizz slimy crunch whistle | y
1 1 1 0 1 0 1
2 1 0 0 1 0 1
3 0 1 0 0 0 1
4 1 1 0 0 0 1
5 0 0 1 0 1 0
6 0 1 1 1 0 0
7 0 0 1 0 0 0
8 1 0 1 0 1 0
9 0 1 1 0 1 0

10 1 0 1 1 1 0
11 0 1 0 1 0 1
12 1 0 0 0 0 1
13 0 0 1 1 1 0
14 1 1 1 0 1 0

Let X = (XM ..., X®)) denote the five features and Y € {0,1} the label.

a) Compute the probabilities Pr ({Y = 1}) and Pr ({Y = 0}) from the table.

Solution: Counting labels in the table, there are 6 YUMMY beans (y = 1) and 8 YUCKY beans (y = 0)



out of 14 total. Thus

Pr({Y:l}):%:%, Pr({Y:O})zﬁzé

b) A brand-new jelly-bean has feature vector
=100 100 l]T (fizz + whistle only).

Estimate the probabilities Pr ({Y =0} | {X = _'}) and Pr ({Y =1} | {X = _’}) If you need to use Laplace
smoothing, clearly indicate why.

Solution: As before, the naive Bayes classifier uses
5 . .
Pr{y =yl X=7}) x Pr( {Y—y}H P9 =29 |y = y}).

Look at the raw counts from the table:

e Among the 8 YUCKY beans (Y = 0), all of them have slimy = 1, so

Pr ({X<3> —0|Y = o}) = 0.

e Among the 6 YUMMY beans (Y = 1), none have whistle = 1, so
Pr ({X<5> —1|Y = 1}) = 0.

Our new bean has X®) =0 and X® = 1, so with unsmoothed estimates we would get
Pr({)?::zw:()}) =0 and Pr({)‘f:fw:n) =0,

leading to zero likelihood for both classes. This is clearly unreasonable, so we must use Laplace

smoothing.

For each class y and feature j, let N, be the number of training beans with label y, and let Nl(]; be the

number with X() =1 and label y. With add-one smoothing for Bernoulli features,

N, - NI +1
N, +2

Pr({XU>=1|Y=y}) Jéﬁ: Pr({X@:o\Y:y}):




For Y = 0 there are Ny = 8 beans, so the denominator is 8 + 2 = 10. Counting from the table:

(gow) N =3 = Pr ({X<1> —0|Y = 0}) -
(fzz)  N§ =3 = Pr({x®=0]y=0})=
(slimy) N% =8 = Pr ({X<3> —0|Y = 0}) -
(crunch) Nl(flg =3, = Pr ({X(4) =0|Y = 0}) =
(whistle) N =6, = Pr ({X<5> —0|Y = 0}) -

For Y =1 there are N7 = 6 beans, so the denominator is 6 + 2 = 8. Counting:

(glow) N} =4, = Pr ({XU) —0|Y =1}

(fzz) N3 =4, = Pr ({X<2) —0|Y = 1}) =

(slimy) N =0, = Pr ({X<3> —0|Y = 1})

(crunch) N =3, = Pr ({X<4> —0|Y = 1})

(whistle) N =0, = Pr ({X<5> —0|Y = 1})
For # = (0,1,0,0,1)T we obtain

—

):

g, ({X1>—1|Y_0})
g, ({XQ)f1|Y—O})
%, Pr({X<3>:1|Y:0}):
g, Pr({X(4):1|Y:O}):f
1%, Pr({X<5):1|Y:0}):
g, Pr({X<1>=1|Y=1}):
g, Pr({X<2>=1|Y=1}>:
:%, Pr{x® =11y =1}) =
:%, Pr{x®=1]y=1})=;
:g, Pr{x®=1]y=1})=<.

Pr ({X(4) —0|Y = 0}) Pr ({X<5> —1|Y = 0})

Pr({Y:O,X
_432 1 3 7
7 5 5 10 5 10
18
_ﬁNO.oomﬁ,
and

O‘l\l\DO‘l\l\D

TO;

2.

s
10°

OO\H[\J\HOO\HOO\O’YOO\O’Y

= 7)) =Pr({y =0 Pr({X =0]Y = 0}) Pr ({X® = 1]Y =0} Pr ({X@ =0 ¥

Pr({(v =18 =7}) =Pr({y = 1) Pr ({XU = 0¥ = 1}) Pr ({x® =1V =1}) Pr ({X@ =01

Pr ({X<4> —0|Y = 1}) Pr ({X<5> —1|Y = 1})

0.00576

LX) ™ 0.00576 + 0.00549

~ 0.512,

0})

1})



and .
Pr ({Y —1|X = *}) ~ 0.488.

So after Laplace smoothing, the model slightly favors class Y = 0.

c) Which class does the classifier predict for this jelly bean?

Solution: Since
Pr({Y=o|)Z= *}) zO.512>Pr({Y:1|X: *}) ~ 0.488,

the naive Bayes classifier predicts Y = 0, i.e., the bean is Yucky.

Problem 3. Naive Bayes as a linear classifier

Consider a binary classification problem with label Y € {0,1} and d binary features X = (XM X (@),
where each X) € {0,1}. Assume the naive Bayes model with {0, 1} features:

Pr({Y =y}) =, Pr<{X<J>—1|Y—y}) =0,, j=1,....d ye{0,1},

and that, conditional on Y, the features XM, ..., X4 are independent.

a) Show that the “log-posterior odds” can be written as

LD

for suitable constants wg, w1, ..., wq that depend only on (m,) and (6,,). Give explicit formulas for wy and
wy .

Solution: By Bayes’ rule and the naive Bayes assumption,
d - .
Pr{y =y| £ =7}) < Pr({y =y}) H (X0 =20 |y =),

For Bernoulli features,

[€)]

Pr{x? =a |y =y}) =07, (1-0;,)" "

Thus

r({XW =20 |y =1})
— log — —|— log

Pr({Y:0|X::E'}) Z Pr({X0) =20 | Y = 0})

9= (J)(l 0. 1)1_x(j)
log—+ log ]’] 2 —.
; 91,(0)(1 0j0)1 ==




For each j,

20 e
| 07 (1—0;0) "
0g 9D (1 _ 9. -z
7o (1—="050)
0.1 _ _0.
=20 log -2 + (1 — 219)) log 1
91,0 — b0
1-0,1 . 01 1-6,1
:10 7j’+z(]) 10 L*lo Js
10,0 800 B1-0,,
1=601 o 0,1(1—0,0)
= log —21 4 2 Jog 21— 20
10, & 0,0(1—0;1)

Plugging back in, the log-odds is

Pr({yzu)?::z})
Pr({Y:O\Xz*})

log

6
10g—+210g Jer(J)log(ej(l);.
1 9

This has the desired linear form

where

b) Conclude that the naive Bayes classifier with Bernoulli features has a linear decision rule of the form

. d ;
() = 1 ifwe+375 w;z) >0,
0 otherwise.

Explain in words what this means geometrically about the decision boundary in {0, 1}4.

Solution: The decision rule predicts the class with larger posterior probability:

g(f):{l ifPr({Y:l\)_(':ﬂ})zPr({Y:OU?:”}),

0 otherwise.

This is equivalent to

9(7) = b logpr({yzm)?:f})

0 otherwise.

From part (a) we have
Pr({y=1|X=27} d .
IOg ( g :w0+zwjx(])’
}

Jj=1

S0
@ 1if wo + Y wjat) >0,
xTr) =
0 otherwise,




as claimed.

If we view & as a point in R? (even though its coordinates are restricted to {0,1}), the set of points

satisfying
d

wo + ijx(j) =0
j=1
is an affine hyperplane. The classifier predicts 1 on one side of this hyperplane and 0 on the other side.
Thus, in the discrete cube {0,1}¢, the naive Bayes classifier corresponds to a linear threshold decision
boundary: it separates the vertices of the cube into two classes using a single hyperplane.

c) Suppose for some feature j we have 6,1 = 6, 9. Show that w; = 0 in this case and interpret this fact: what
does naive Bayes do with a feature that is equally distributed in both classes?

Solution: From part (a),

If 9j,1 = ijo, then
05,1(1 = 050) =0;0(1 —0;1),

so the fraction inside the logarithm is 1 and hence

w; =logl=0.

Therefore feature j does not appear in the decision rule:
d
wo + Z wrz®  does not depend on ).
k=1

In other words, if a feature has exactly the same conditional distribution in both classes (it is equally
likely to be 1 given Y = 0 as given Y = 1), then naive Bayes assigns it zero weight and effectively
ignores it when making predictions. Such a feature carries no discriminative information about the
label in this model.




