Lecture 3

Empirical Risk Minimization - mean
absolute error

DSC 40A, Fall 2025



Agenda

e Recap: Mean squared error.
e Another loss function.

e Minimizing mean absolute error.



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

The modeling recipe

We've implicitly introduced a three-step process for finding optimal model parameters
(like h*) that we can use for making predictions:
1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.






Minimizing using calculus

We'd like to minimize:

In order to minimize Ryq(h), we:

1. take its derivative with respect to h,
2. set it equal to 0,
3. solve for the resulting h*, and

4. perform a second derivative test to ensure we found a minimum.



Step 4: Second derivative test

Rq(h) = $((T2= b7 + (0 = h)? + (61 = h)? + (85 = )* + (92 = )?) We already saw that Ry, (h) is convex
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The mean minimizes mean squared error!

e The problem we set out to solve was, find the A* that minimizes:

qu(h) — i i(yz — h)2

n

e The answer is:
h* = Mean(y1,Y2,---,Yn)
e The best constant prediction, in terms of mean squared error, is always the mean.

e This answer is always unique!

e We call h* our optimal model parameter, for when we use:
o the constant model, H(x) = h, and

o the squared loss function, Lgy(y;, h) = (y; — h)?.



Bonus: the mean is easy to compute

def mean(numbers):
total = ©
for number in numbers:
total = total + number
return total / len(numbers)

e Time complexity O(n)



Aside: Notation

Another way of writing

1 n
h* is the value of h that minimizes — Z(yZ — h)?

n -

h* is the solution to an optimization problem.
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Another loss function

e |ast lecture, we started by computing the error for each of our , but ran
into the issue that some errors were positive and some were negative.

€ =Yi —

e The solution was to square the errors, so that all are non-negative. The resulting
loss function is called squared loss.

Liq(yi, (1)) = (i — H (1))’
e Another loss function, which also measures how far H(x;) is from y;, is absolute

loss.

Labs(yia ) — ‘yz — ’
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Squared loss vs. absolute loss

For the constant model, H(z;) = h, so we can simplify our loss functions as follows:

e Squared loss: Lgy(yi, ) = (y; — 1)

e Absolute loss: Lans(ys, 1) = |y; — 1.
Consider, again, our example dataset of five commute times and the

Yy = 72 y2 = 90 ys = 61 Yys = 85 Y5 = 92
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Squared loss vs. absolute loss

e When we use squared loss, h* is the point at which the average squared loss is
minimized.

e When we use absolute loss, h™ is the point at which the average absolute loss is
minimized.
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Mean absolute error

Suppose we collect n commute times, y1,Y2, ..., Yn.

The average absolute loss, or mean absolute error (MAE), of the prediction h is:
1 n
Rabs(h) — ; Z ‘yz — h’
i=1

We'd like to find the best prediction, A*.

Previously, when using squared loss we used calculus to find the optimal model
parameter h™ that minimized Rg.

Can we use calculus to minimize R,ps(h), too?
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e error
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Minimizing using calculus, again

We'd like to minimize:

In order to minimize R,ps(h), we:

1. take its derivative with respect to h,
2. set it equal to 0,
3. solve for the resulting h*, and

4. perform a second derivative test to ensure we found a minimum.
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Step 0: The derivative of |y; — h)|

lyi — hl

h-

i

Remember that |z| is a piecewise linear
function of x:

T x>0
z| =<0 =0
—x x<0

So,
h:

y; — h/| is also a piecewise linear function of

(y; —h h<uy;
lyi —h| =140 y; = h
\h—yi h>y;
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Step 0: The "derivative" of |y; — A

lyi — hl

h-

Yi

ly; — h| = <

What is <L |y; — h|?

(yi—h h<y;

\h_yz‘

Yi —
h>yi
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Step 1: The "derivative" of R.,s(h)
d d

_Rash —
L R
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The slope of R, at h is
1

n

(# of y; <h)—(# of y; > h)]

Suppose that the number of points n is odd. At what value of h does the slope change
from negative to positive?

e A) h =meanof {y1,...,Yn}

e B) h = median of {y1,...,yn}

e C) h = mode Of{yl,---ayn}
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Steps 2 and 3: Set to 0 and solve for the minimizer, h*
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The median minimizes mean absolute error!

e The new problem we set out to solve was, find the A* that minimizes:
1 n
Rabs(h) — g Z ‘yz — h‘
i=1

e The answer is:

h* = Median(y1,yo,...,Yn)

e This is because the median has an equal number of data points to the left of it and
to the right of it.

e To make a bit more sense of this result, let's graph Raps(h).
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Visualizing mean absolute error

Consider, again, our example
Raps(h) = +(|72 = h| +190 — h| + |61 — | + |85 — h| + |92 — hl) dataset of five commute
times.

72,90, 61, 85, 92

Where are the "bends" in the
graph of R.ps(h) — that is,
where does its slope change?
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Consider, again, our example dataset of five commute times.
72,90,61, 85, 92
Suppose we add a sixth point so that our data is now
72,90,61,85,92,75

Which of the following correctly describes the h* that minimizes mean absolute error
for our new dataset?

e A) 85 only

e B) 75 only

e C) 80 only

e D) Any value between 75 and 85 inclusive
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Visualizing mean absolute error, with an even number of points

Rups(h) = L(172 = B| + 190 — h| + |61 — h| + |85 — h| + |92 — h| + |75 — h|) What if we add a sixth data
254 .
point?

72,90, 61, 85,92, 75

20
Is there a unique h™*?

Rabs (h)
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The median minimizes mean absolute error!

e The new problem we set out to solve was, find the A* that minimizes:
1 n
Rabs(h) — g Z ‘yz — h‘
i=1

e The answer is:

h* = Median(y1,yo,...,Yn)

The best constant prediction, in terms of mean absolute error, is always the median.

e When n is odd, this answer is unique.

e When n is even, any number between the middle two data points (when sorted)
also minimizes mean absolute error.

e When n is even, define the median to be the mean of the middle two data points.
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The modeling recipe, again
We've now made two full passes through our "modeling recipe."

1. Choose a model.
2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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Empirical risk minimization

e The formal name for the process of minimizing average loss is empirical risk

minimization.

e Another name for "average loss" is empirical risk.

* When we use the squared loss function, L, (y;, h) = (y; — h)?

corresponding empirical risk is mean squared error:

Ryq(h) = & i(yz —h)?

n

e When we use the absolute loss function, L.ns(yi, h) = |y; — h
empirical risk is mean absolute error:

1
Rabs(h) — Z Z ‘yz — h‘
1=1

, the

, the corresponding
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Empirical risk minimization, in general

Key idea: If L(y;, h) is any loss function, the corresponding empirical risk is:

R(B) = =3 L(y.h)
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What questions do you have?
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Summary, next time

e h* = Mean(y1,¥y2,-- -, Yn) Minimizes mean squared error,
1
Ry(h) = & 2201 (yi — h)%.
e h* = Median(y1,y2,- - -, Yn) Minimizes mean absolute error,

Rans(h) = % > i1 |yi — hl.
e Ry (h)and Raps(h) are examples of empirical risk — that is, average loss.

e Next time: What's the relationship between the mean and median? What is the
significance of Rgy(h*) and Raps(h*)?
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