

Lecture 3

Empirical Risk Minimization - mean absolute error

DSC 40A, Fall 2025

Agenda

- Recap: Mean squared error.
- Another loss function.
- Minimizing mean absolute error.

Question 🤔

Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](http://q.dsc40a.com)

The modeling recipe

We've implicitly introduced a three-step process for finding optimal model parameters (like h^*) that we can use for making predictions:

1. Choose a model.

constant model $h(x) = h$

Another choice : $h(x) = w_0 + w_1 x$

2. Choose a loss function.

$L_{sq}(y_i, h) = (y_i - h)^2$

changing today

3. Minimize average loss to find optimal model parameters.

$h^* = \text{Mean}\{y_1, y_2, \dots, y_n\}$

different h^* ?

Recap: Mean squared error

Minimizing using calculus

We'd like to minimize:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^n \underbrace{l(y_i, h)}_{l_{\text{sq}}(y_i, h)}$$

$$\frac{d}{dh} l_{\text{sq}}(y_i, h) = 2(h - y_i)$$

In order to minimize $R_{\text{sq}}(h)$, we:

1. take its derivative with respect to h ,

$$\frac{d}{dh} R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^n \frac{d}{dh} l_{\text{sq}}(y_i, h)$$

2. set it equal to 0,

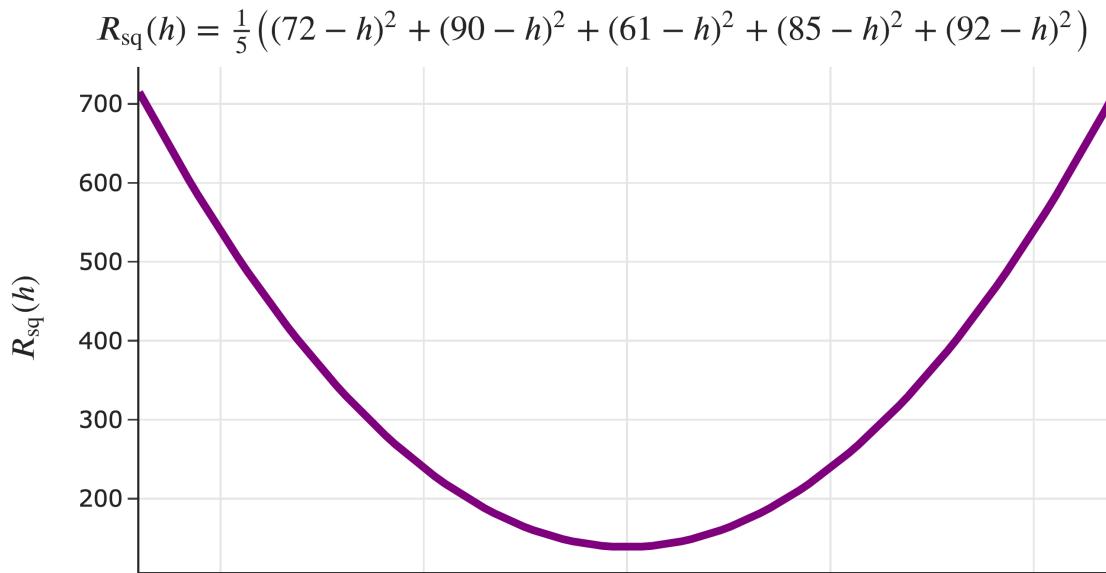
$$\frac{2}{n} \sum_{i=1}^n (h - y_i) = 0$$

3. solve for the resulting h^* , and

$$h^* = \text{mean } \{y_1, \dots, y_n\}$$

4. perform a second derivative test to ensure we found a minimum.

Step 4: Second derivative test



We already saw that $R_{\text{sq}}(h)$ is **convex**, i.e. that it opens upwards, so the h^* we found must be a minimum, not a maximum.

$$\frac{d^2}{dh^2} R_{\text{sq}}(h) = \frac{d}{dh} \left[\frac{2}{n} \sum_{i=1}^n (h - y_i) \right] = \frac{2}{n} \sum_{i=1}^n \frac{d}{dh} h = \frac{2}{n} \sum_{i=1}^n 1 = \frac{2}{n} \cdot n = 2 > 0$$

n times
 $1+1+\dots+1$

$$\frac{d^2}{dh^2} R_{\text{sq}}(h) > 0 \Rightarrow h^* \text{ is a minimizer}$$

$$\frac{d^2}{dh^2} R_{\text{sq}}(h) > 0 \Rightarrow h^* \text{ is a minimizer}$$

The mean minimizes mean squared error!

- The problem we set out to solve was, find the h^* that minimizes:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

- The answer is:

$$h^* = \text{Mean}(y_1, y_2, \dots, y_n)$$

- The **best constant prediction**, in terms of mean squared error, is always the **mean**.
- This answer is always unique!
- We call h^* our **optimal model parameter**, for when we use:
 - the constant model, $H(x) = h$, and
 - the squared loss function, $L_{\text{sq}}(y_i, h) = (y_i - h)^2$.

Bonus: the mean is easy to compute

```
def mean(numbers):  
    total = 0  
    for number in numbers:  
        total = total + number  
    return total / len(numbers)
```

- Time complexity $\Theta(n)$

403

Aside: Notation

Another way of writing

h^* is the value of h that minimizes $\frac{1}{n} \sum_{i=1}^n (y_i - h)^2$

is

$$h^* = \underset{h}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^n (y_i - h)^2 \right)$$

"the argument that minimizes"

h^* is the solution to an **optimization problem**.

Another loss function

Another loss function

- Last lecture, we started by computing the **error** for each of our **predictions**, but ran into the issue that some errors were positive and some were negative.

data we have $e_i = y_i - H(x_i)$ *prediction*

- The solution was to **square** the errors, so that all are non-negative. The resulting loss function is called **squared loss**.

$$L_{\text{sq}}(y_i, H(x_i)) = (y_i - H(x_i))^2$$

- Another loss function, which also measures how far $H(x_i)$ is from y_i , is **absolute loss**.

$$L_{\text{abs}}(y_i, H(x_i)) = |y_i - H(x_i)|$$

Squared loss vs. absolute loss

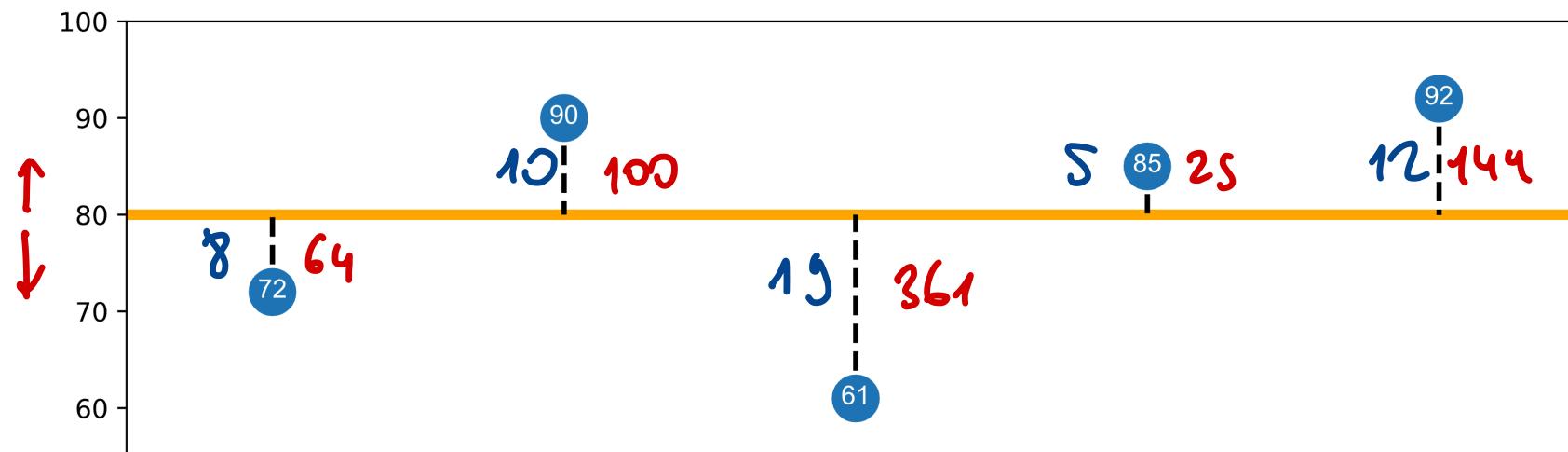
For the constant model, $H(x_i) = h$, so we can simplify our loss functions as follows:

- Squared loss: $L_{\text{sq}}(y_i, h) = (y_i - h)^2$.
- Absolute loss: $L_{\text{abs}}(y_i, h) = |y_i - h|$.

mean
↑

Consider, again, our example dataset of five commute times and the prediction $h = 80$.

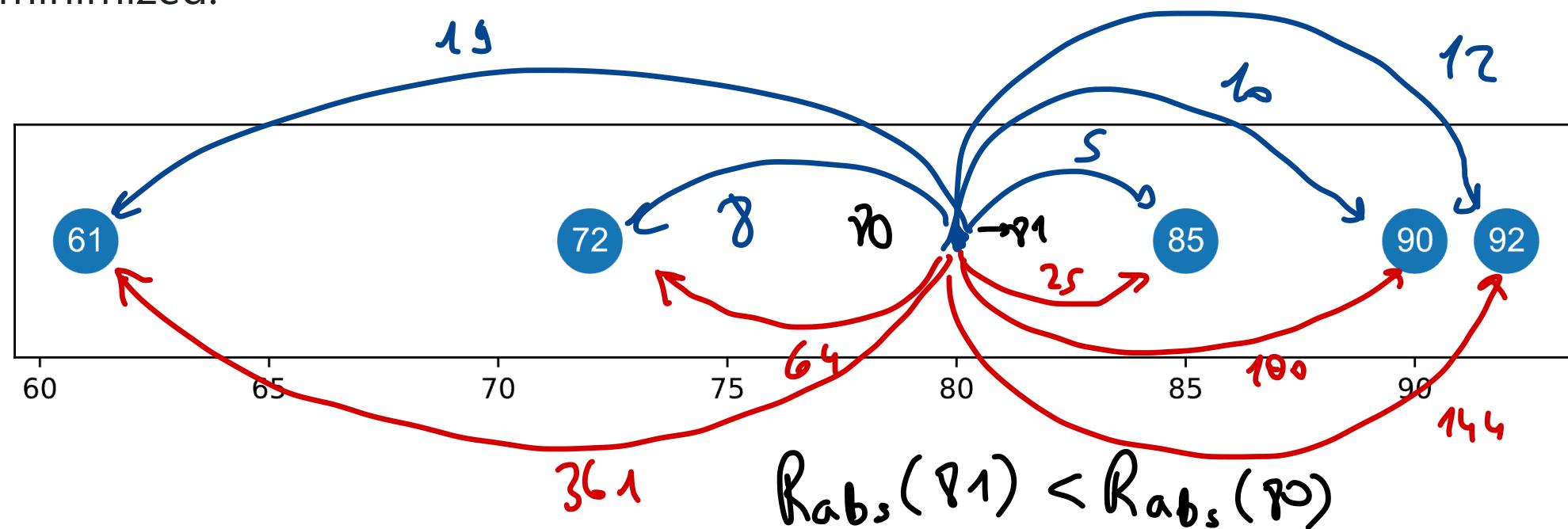
$$y_1 = 72 \quad y_2 = 90 \quad y_3 = 61 \quad y_4 = 85 \quad y_5 = 92$$



80 minimizes avg. sqr loss
but not necessarily avg abs. loss

Squared loss vs. absolute loss

- When we use squared loss, h^* is the point at which the average squared loss is minimized.
- When we use absolute loss, h^* is the point at which the average absolute loss is minimized.



Mean absolute error

- Suppose we collect n commute times, y_1, y_2, \dots, y_n .
- The average absolute loss, or mean absolute error (MAE), of the prediction h is:

$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|$$

$\ell_{\text{abs}}(y_i, h)$

- We'd like to find the best prediction, h^* .
- Previously, when using squared loss we used calculus to find the optimal model parameter h^* that minimized R_{sq} .
- Can we use calculus to minimize $R_{\text{abs}}(h)$, too?

Minimizing mean absolute error

Minimizing using calculus, again

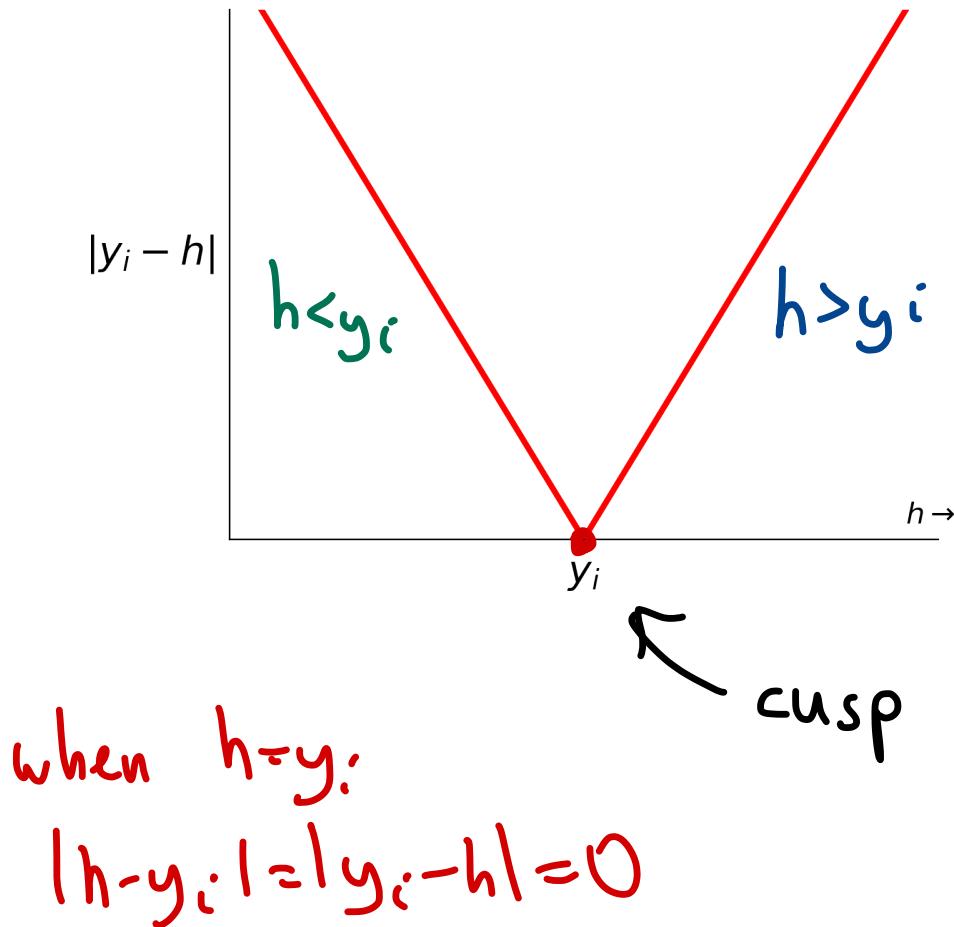
We'd like to minimize:

$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|$$

In order to minimize $R_{\text{abs}}(h)$, we:

1. take its derivative with respect to h ,
2. set it equal to 0,
3. solve for the resulting h^* , and
4. perform a second derivative test to ensure we found a minimum.

Step 0: The derivative of $|y_i - h|$



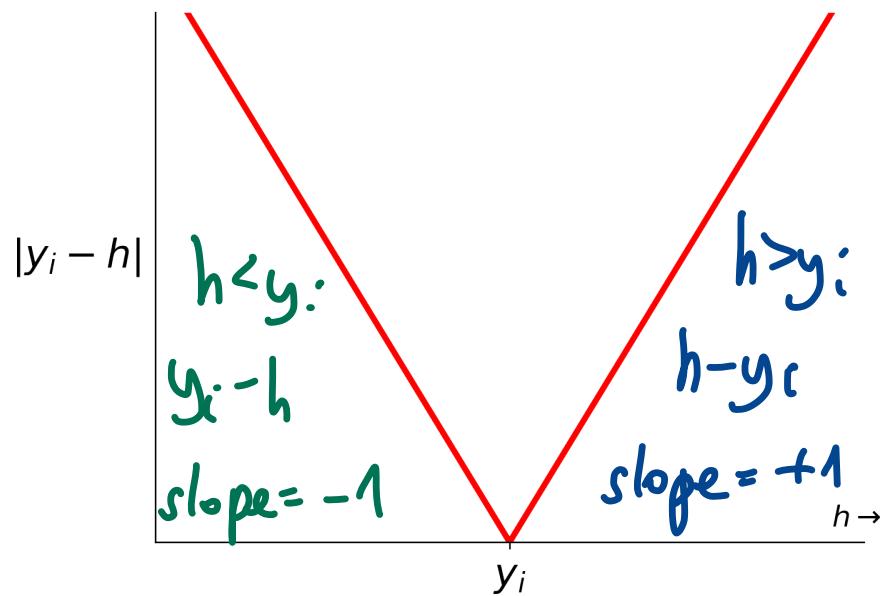
Remember that $|x|$ is a **piecewise linear** function of x :

$$|x| = \begin{cases} x & x > 0 \\ 0 & x = 0 \\ -x & x < 0 \end{cases}$$

So, $|y_i - h|$ is also a piecewise linear function of h :

$$|y_i - h| = \begin{cases} y_i - h & h < y_i \\ 0 & y_i = h \\ h - y_i & h > y_i \end{cases}$$

Step 0: The "derivative" of $|y_i - h|$



$$|y_i - h| = \begin{cases} y_i - h & h < y_i \\ 0 & y_i = h \\ h - y_i & h > y_i \end{cases}$$

What is $\frac{d}{dh} |y_i - h|$?

$$\frac{d}{dh} |y_i - h| = \begin{cases} -1 & h < y_i \\ \text{undefined} & h = y_i \\ +1 & h > y_i \end{cases}$$

ignore for now

Step 1: The "derivative" of $R_{\text{abs}}(h)$

$$\frac{d}{dh} |y_i - h| = \begin{cases} -1, & y_i > h \\ \text{undefined}, & y_i = h \\ +1, & y_i < h \end{cases}$$

$$\frac{d}{dh} R_{\text{abs}}(h) = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^n |y_i - h| \right)$$

$$= \frac{1}{n} \sum_{i=1}^n \frac{d}{dh} |y_i - h| \quad \rightarrow \text{this is a sum of}$$

$$= \frac{1}{n} \left[\# \left(\underbrace{h > y_i}_{\substack{\text{num of datapoints} \\ h \text{ is right of}}} \right) - \# \left(\underbrace{h < y_i}_{\substack{\text{num of points} \\ h \text{ is to} \\ \text{the left of}}} \right) \right]$$

we add +1 when $h > y_i$
we add -1 when $h < y_i$

Ex: 61 72 85 90 91
 $h=80 \rightarrow$

$$\frac{d}{dh} R_{\text{abs}}(80) = \frac{+1+1-1-1-1}{5} = -\frac{1}{5}$$

Question 🤔

Answer at q.dsc40a.com

The slope of R_{abs} at h is

$$\frac{1}{n}[(\# \text{ of } y_i < h) - (\# \text{ of } y_i > h)]$$

Suppose that the number of points n is odd. At what value of h does the slope change from negative to positive?

- A) $h = \text{mean of } \{y_1, \dots, y_n\}$
- B) $h = \text{median of } \{y_1, \dots, y_n\}$
- C) $h = \text{mode of } \{y_1, \dots, y_n\}$

Steps 2 and 3: Set to 0 and solve for the minimizer, h^*

$$\frac{d}{dh} R_{abs}(h) = \frac{1}{n} [\#(h > y_i) - \#(h < y_i)] = 0$$

$$\#(h > y_i) = \#(h < y_i)$$

we want h^* is the value when the
number of datapoints to the left of h } median!
= number of datapoints to the right of h

The median minimizes mean absolute error!

- The new problem we set out to solve was, find the h^* that minimizes:

MAE
↳ absolute

$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|$$

- The answer is:

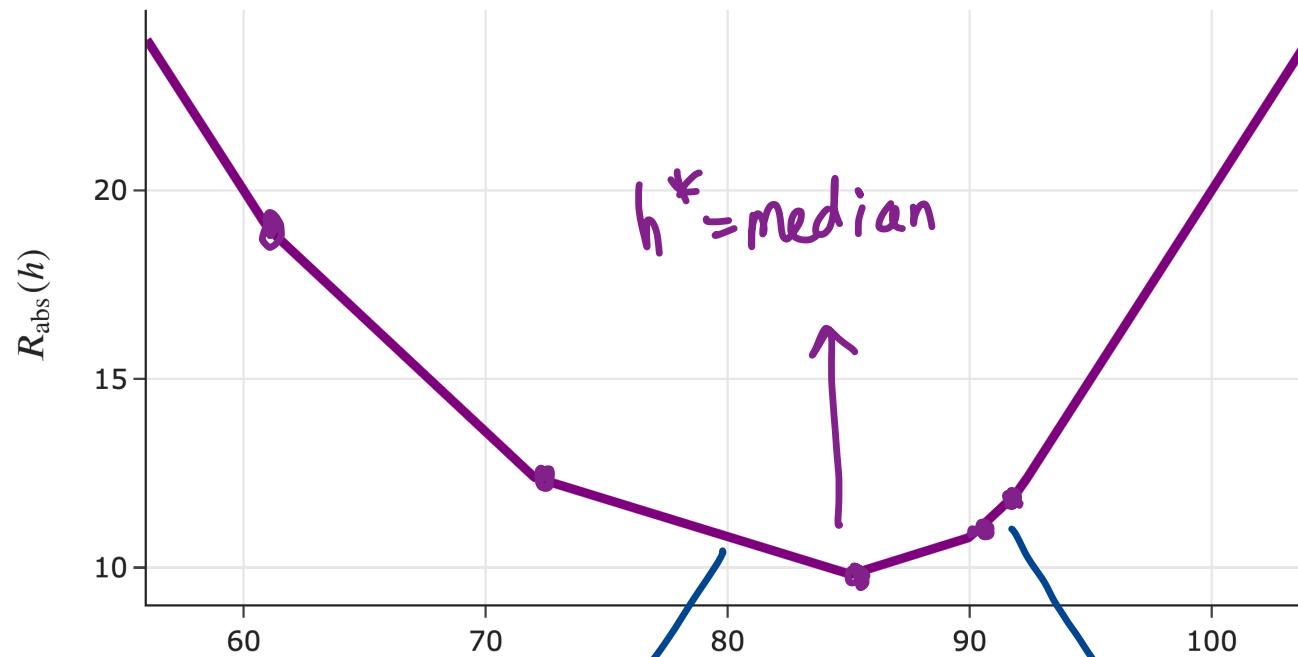
$$h^* = \text{Median}(y_1, y_2, \dots, y_n)$$

- This is because the median has an equal number of data points to the left of it and to the right of it.
- To make a bit more sense of this result, let's graph $R_{\text{abs}}(h)$.

Visualizing mean absolute error:

$$= \frac{1}{5} [\sqrt{|72 - h|} + \sqrt{|61 - h|} + \sqrt{|85 - h|} + \sqrt{|90 - h|} + \sqrt{|92 - h|}]$$

$$R_{\text{abs}}(h) = \frac{1}{5}(|72 - h| + |90 - h| + |61 - h| + |85 - h| + |92 - h|)$$



$$\frac{d}{dh} R_{\text{abs}}(85) = \frac{2-3}{5} = -\frac{1}{5}$$

$$\frac{d}{dh} R_{\text{abs}}(90) = \frac{4-1}{5} = \frac{3}{5}$$

Consider, again, our example dataset of five commute times.

72, 90, 61, 85, 92

Where are the "bends" in the graph of $R_{\text{abs}}(h)$ – that is, where does its slope change?

Question 🤔

Answer at q.dsc40a.com

Consider, again, our example dataset of five commute times.

72, 90, 61, 85, 92

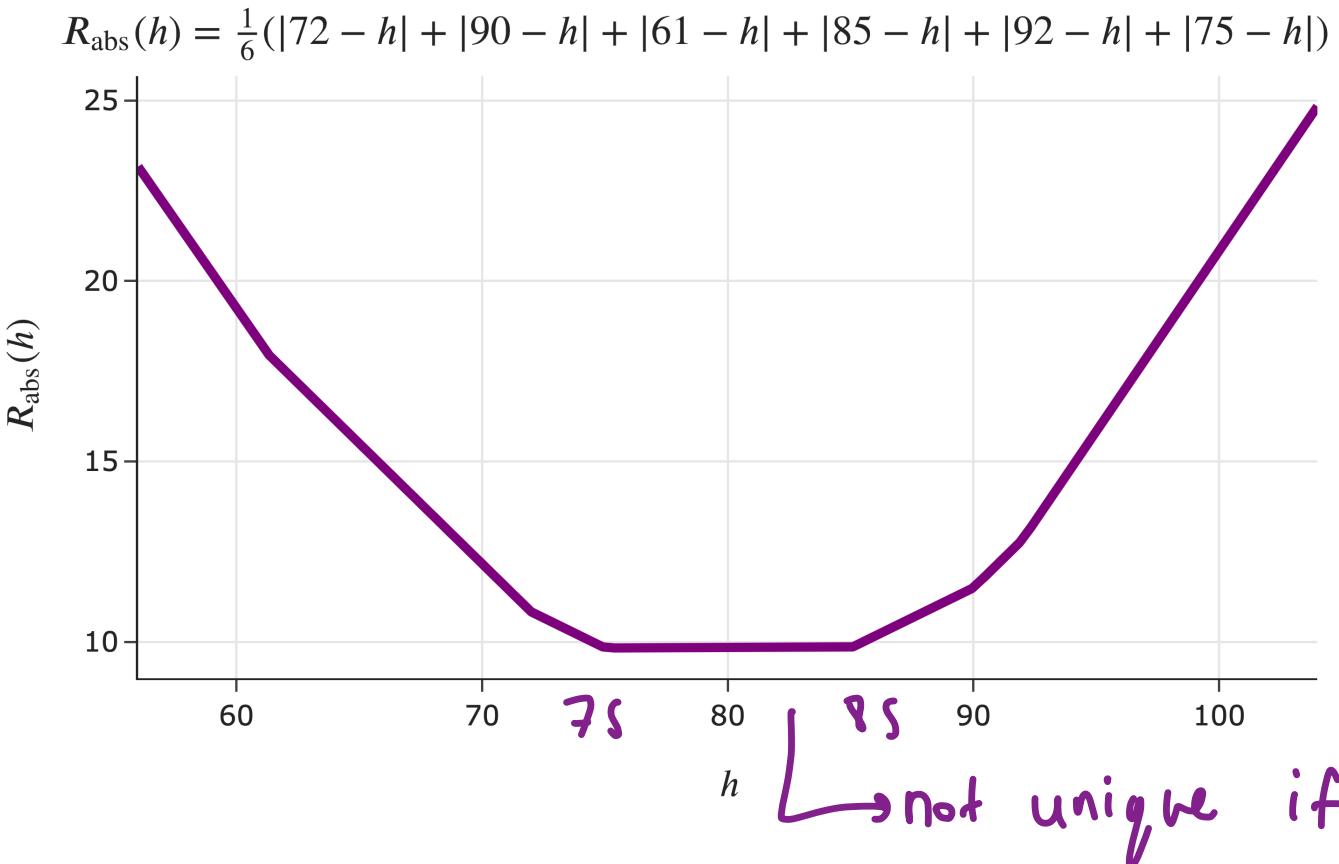
Suppose we add a sixth point so that our data is now

72, 90, 61, 85, 92, 75

Which of the following correctly describes the h^* that minimizes mean absolute error for our new dataset?

- A) 85 only
- B) 75 only
- C) 80 only
- D) Any value between 75 and 85 inclusive

Visualizing mean absolute error, with an even number of points



What if we add a sixth data point?

72, 90, 61, 85, 92, 75

Is there a unique h^* ?

$R_{\text{abs}}(h^*) = R_{\text{abs}}(h)$
for $75 \leq h \leq 85$

any $75 \leq h \leq 85$ minimizes $R_{\text{abs}}(h)$

The median minimizes mean absolute error!

- The new problem we set out to solve was, find the h^* that minimizes:

$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|$$

- The answer is:

$$h^* = \text{Median}(y_1, y_2, \dots, y_n)$$

The **best constant prediction**, in terms of mean absolute error, is always the **median**.

- When n is odd, this answer is unique.
- When n is even, any number between the middle two data points (when sorted) also minimizes mean absolute error.
- When n is even, define the median to be the mean of the middle two data points.

The modeling recipe, again

We've now made two full passes through our "modeling recipe."

1. Choose a model.
2. Choose a loss function.
3. Minimize average loss to find optimal model parameters.

Empirical risk minimization

- The formal name for the process of minimizing average loss is **empirical risk minimization**.
- Another name for "average loss" is **empirical risk**.
- When we use the squared loss function, $L_{\text{sq}}(y_i, h) = (y_i - h)^2$, the corresponding empirical risk is mean squared error:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

- When we use the absolute loss function, $L_{\text{abs}}(y_i, h) = |y_i - h|$, the corresponding empirical risk is mean absolute error:

$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|$$

Empirical risk minimization, in general

Key idea: If $L(y_i, h)$ is any loss function, the corresponding empirical risk is:

$$R(h) = \frac{1}{n} \sum_{i=1}^n L(y_i, h)$$

Question 🤔

Answer at q.dsc40a.com

What questions do you have?

Summary, next time

- $h^* = \text{Mean}(y_1, y_2, \dots, y_n)$ minimizes mean squared error,
$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^n (y_i - h)^2.$$
- $h^* = \text{Median}(y_1, y_2, \dots, y_n)$ minimizes mean absolute error,
$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|.$$
- $R_{\text{sq}}(h)$ and $R_{\text{abs}}(h)$ are examples of **empirical risk** – that is, average loss.
- **Next time:** What's the relationship between the mean and median? What is the significance of $R_{\text{sq}}(h^*)$ and $R_{\text{abs}}(h^*)$?