

Lecture 4

Comparing Loss Functions

DSC 40A, Fall 2025

Announcements

- Homework 1 is due on **Friday, October 10th**.
- Remember that in, general, groupwork worksheets are released on Sunday and due Monday.
- Look at the office hours schedule [here](#) and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- Recap: Empirical risk minimization.
- Choosing a loss function.
 - The role of outliers.
- Other loss functions

Question 🤔

Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](http://q.dsc40a.com)

Recap: Empirical risk minimization

Goal

We had one goal in Lectures 2 and 3: given a dataset of values from the past, **find the best constant prediction** to make.

$$y_1 = 72 \quad y_2 = 90 \quad y_3 = 61 \quad y_4 = 85 \quad y_5 = 92$$

Key idea: Different definitions of "best" give us different "best predictions."

The modeling recipe

In Lectures 2 and 3, we made two full passes through our "modeling recipe."

1. Choose a model.

$$H(x) = h$$

2. Choose a loss function.

$$L_{\text{sq}}(y_i, h) = (y_i - h)^2 \quad L_{\text{abs}}(y_i, h) = |y_i - h|^2$$

3. Minimize average loss to find optimal model parameters.

$$h^* = \text{mean}(y_1, \dots, y_n) \quad h^* = \text{median}(y_1, \dots, y_n)$$

Empirical risk minimization

- The formal name for the process of minimizing average loss is **empirical risk minimization**.
- Another name for "average loss" is **empirical risk**.
- When we use the squared loss function, $L_{\text{sq}}(y_i, h) = (y_i - h)^2$, the corresponding empirical risk is mean squared error:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

- When we use the absolute loss function, $L_{\text{abs}}(y_i, h) = |y_i - h|$, the corresponding empirical risk is mean absolute error:

$$R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|$$

Empirical risk minimization, in general

Key idea: If $L(y_i, h)$ is any loss function, the corresponding empirical risk is:

$$R(h) = \frac{1}{n} \sum_{i=1}^n L(y_i, h)$$

Choosing a loss function

Now what?

- We know that, for the constant model $H(x) = h$, the **mean** minimizes mean squared error.
- We also know that, for the constant model $H(x) = h$, the **median** minimizes mean absolute error.
- **How does our choice of loss function impact the resulting optimal prediction?**

Comparing the mean and median

- Consider our example dataset of 5 commute times.

$$y_1 = 72 \quad y_2 = 90 \quad y_3 = 61 \quad y_4 = 85 \quad y_5 = 92$$

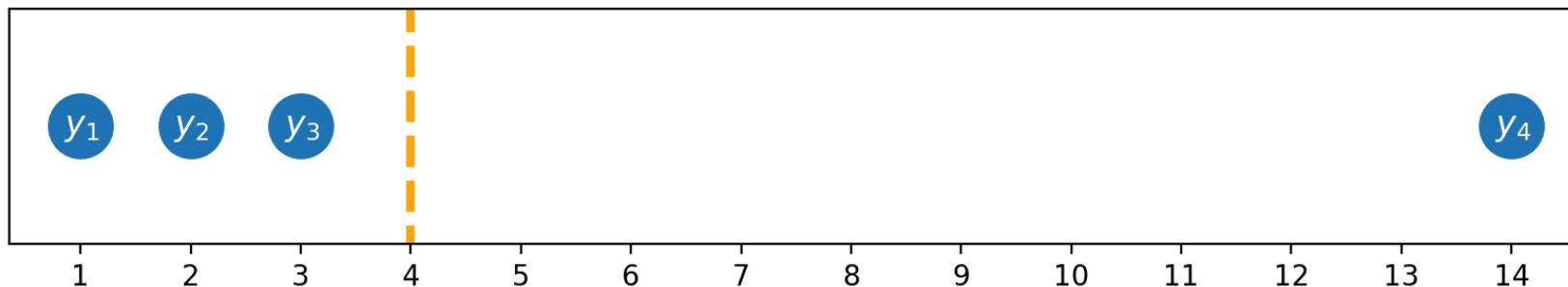
- As of now, the median is 85 and the mean is 80.
- What if we add 200 to the largest commute time, 92?

$$y_1 = 72 \quad y_2 = 90 \quad y_3 = 61 \quad y_4 = 85 \quad y_5 = 292$$

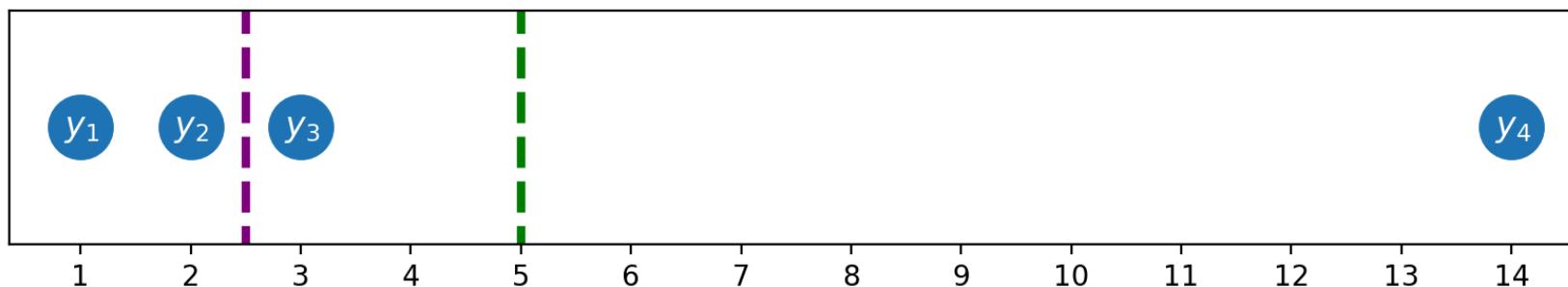
- Now, the median is but the mean is !
- Key idea: The mean is quite **sensitive** to outliers.

Outliers

Below, $|y_4 - h|$ is 10 times as big as $|y_3 - h|$, but $(y_4 - h)^2$ is 100 times $(y_3 - h)^2$.

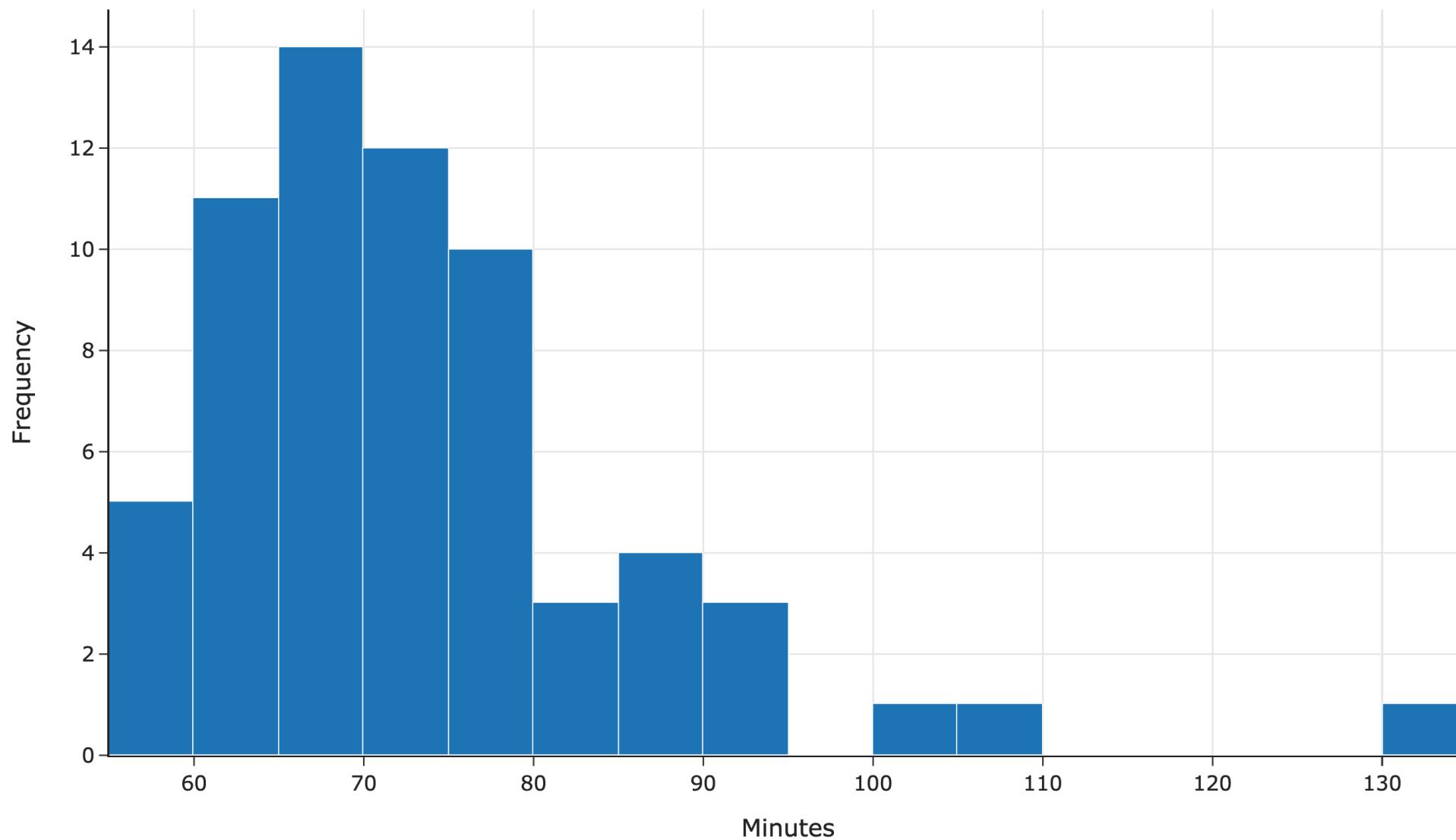


The result is that the **mean** is "pulled" in the direction of outliers, relative to the **median**.



As a result, we say the **median** is **robust** to outliers. But the **mean** was easier to solve for.

Distribution of Commuting Time

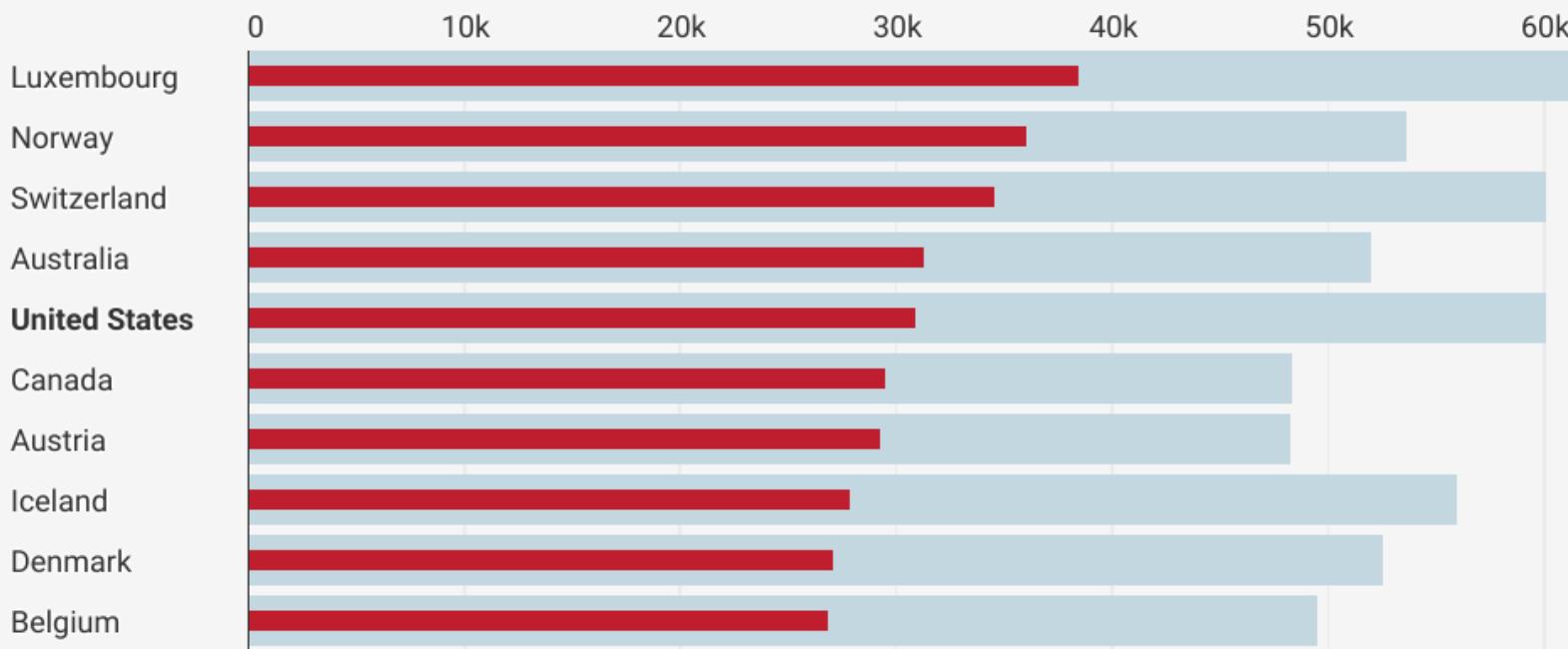


Example: Income inequality

Average vs median income

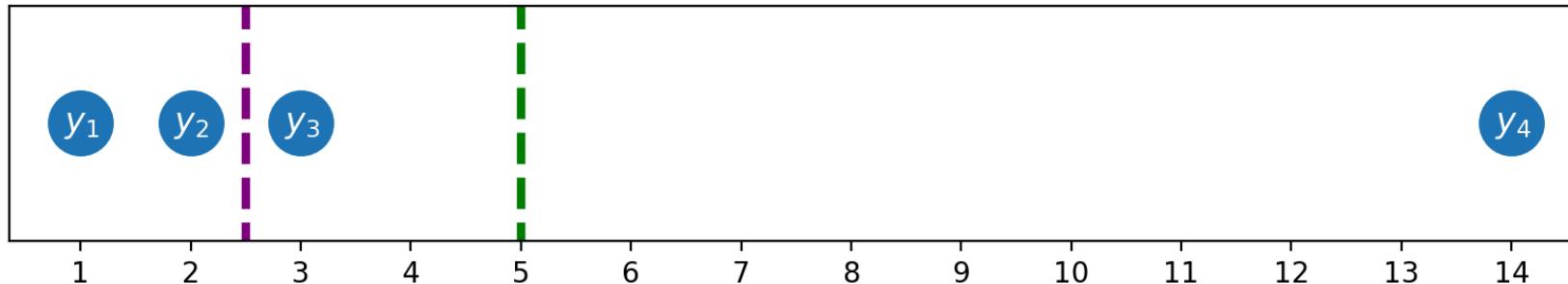
Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by the currencies' respective purchasing power (PPP).

■ Average income in USD ■ Median income



Balance points

Both the **mean** and **median** are "balance points" in the distribution.



- The **mean** is the point where $\sum_{i=1}^n (y_i - h) = 0$.
- The **median** is the point where $\# (y_i < h) = \# (y_i > h)$.

Why stop at squared loss?

Empirical Risk, $R(h)$	Derivative of Empirical Risk, $\frac{d}{dh} R(h)$	Minimizer
$\frac{1}{n} \sum_{i=1}^n y_i - h $	$\frac{1}{n} \left(\sum_{y_i < h} 1 - \sum_{y_i > h} 1 \right)$	median
$\frac{1}{n} \sum_{i=1}^n (y_i - h)^2$	$\frac{-2}{n} \sum_{i=1}^n (y_i - h)$	mean
$\frac{1}{n} \sum_{i=1}^n y_i - h ^3$???
$\frac{1}{n} \sum_{i=1}^n (y_i - h)^4$???
$\frac{1}{n} \sum_{i=1}^n (y_i - h)^{100}$???
...

Generalized L_p loss

For any $p \geq 1$, define the L_p loss as follows:

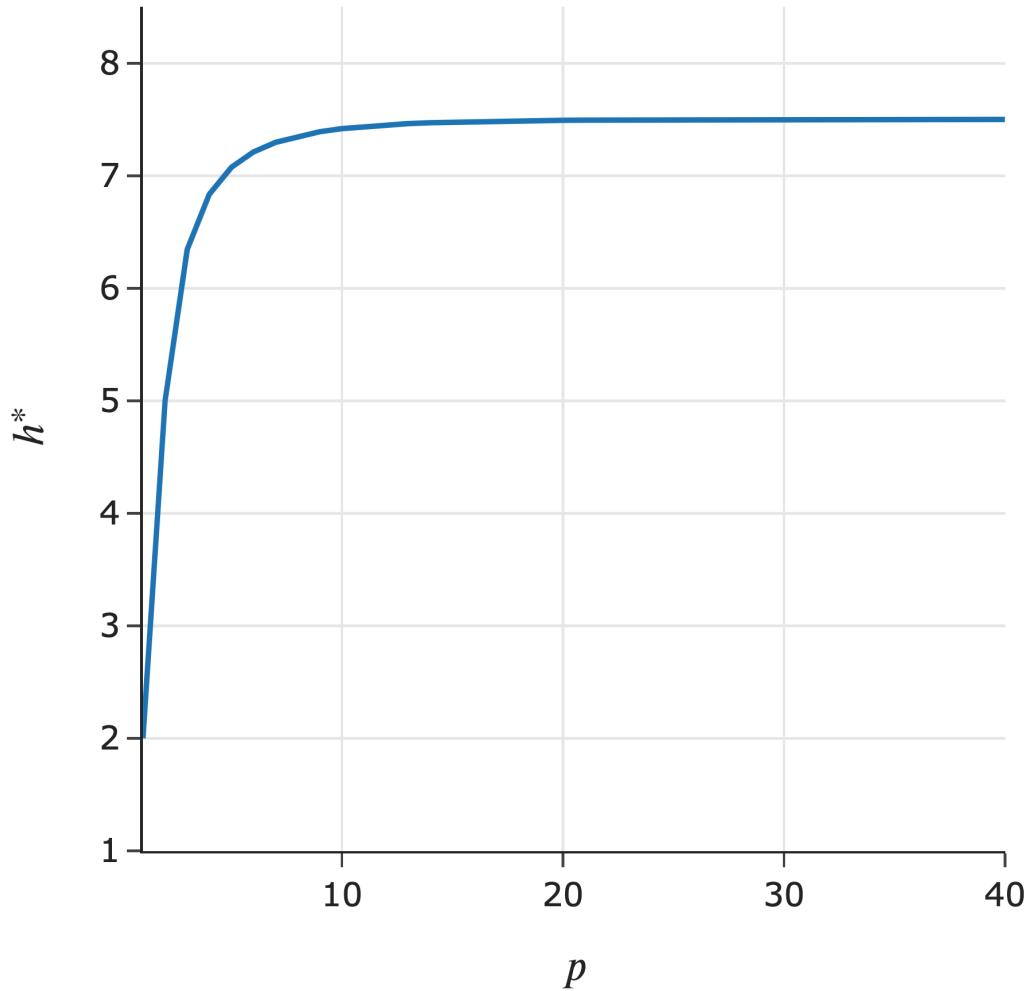
$$L_p(y_i, h) = |y_i - h|^p$$

The corresponding empirical risk is:

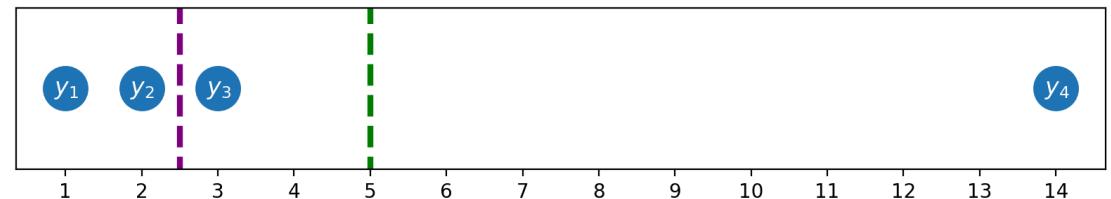
$$R_p(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|^p$$

- When $p = 1$, $h^* = \text{Median}(y_1, y_2, \dots, y_n)$.
- When $p = 2$, $h^* = \text{Mean}(y_1, y_2, \dots, y_n)$.
- What about when $p = 3$?
- What about when $p \rightarrow \infty$?

What value does h^* approach, as $p \rightarrow \infty$?



Consider the dataset 1, 2, 3, 14:



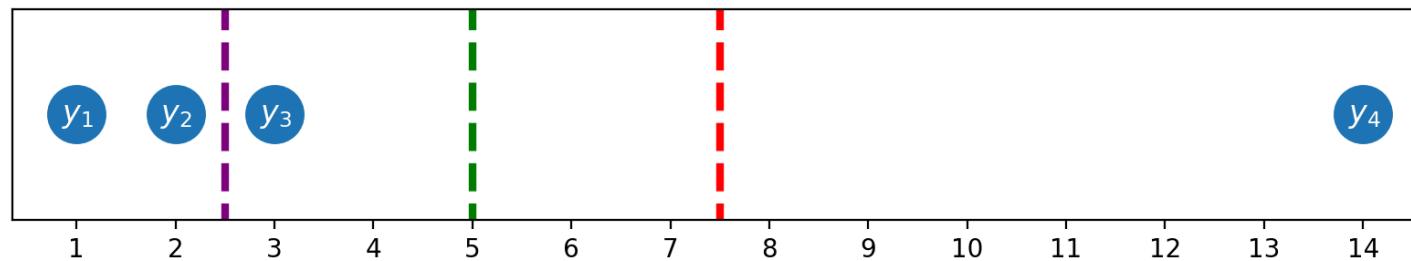
On the left:

- The x -axis is p .
- The y -axis is h^* , the optimal constant prediction for L_p loss:

$$h^* = \operatorname{argmin}_h \frac{1}{n} \sum_{i=1}^n |y_i - h|^p$$

The *midrange* minimizes average L_∞ loss!

On the previous slide, we saw that as $p \rightarrow \infty$, the minimizer of mean L_p loss approached **the midpoint of the minimum and maximum values in the dataset, or the midrange**.



- As $p \rightarrow \infty$, $R_p(h) = \frac{1}{n} \sum_{i=1}^n |y_i - h|^p$ minimizes the "worst case" distance from any data point". (Read more [here](#)).
- If your measure of "good" is "not far from any one data point", then the midrange is the best prediction.

Another example: 0-1 loss

Consider, for example, the 0-1 loss:

$$L_{0,1}(y_i, h) = \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^n L_{0,1}(y_i, h)$$

Question 🤔

Answer at q.dsc40a.com

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^n \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

Suppose y_1, y_2, \dots, y_n are all unique. What is $R_{0,1}(y_1)$?

- A. 0.
- B. $\frac{1}{n}$.
- C. $\frac{n-1}{n}$.
- D. 1.

Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^n \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

Summary: Choosing a loss function

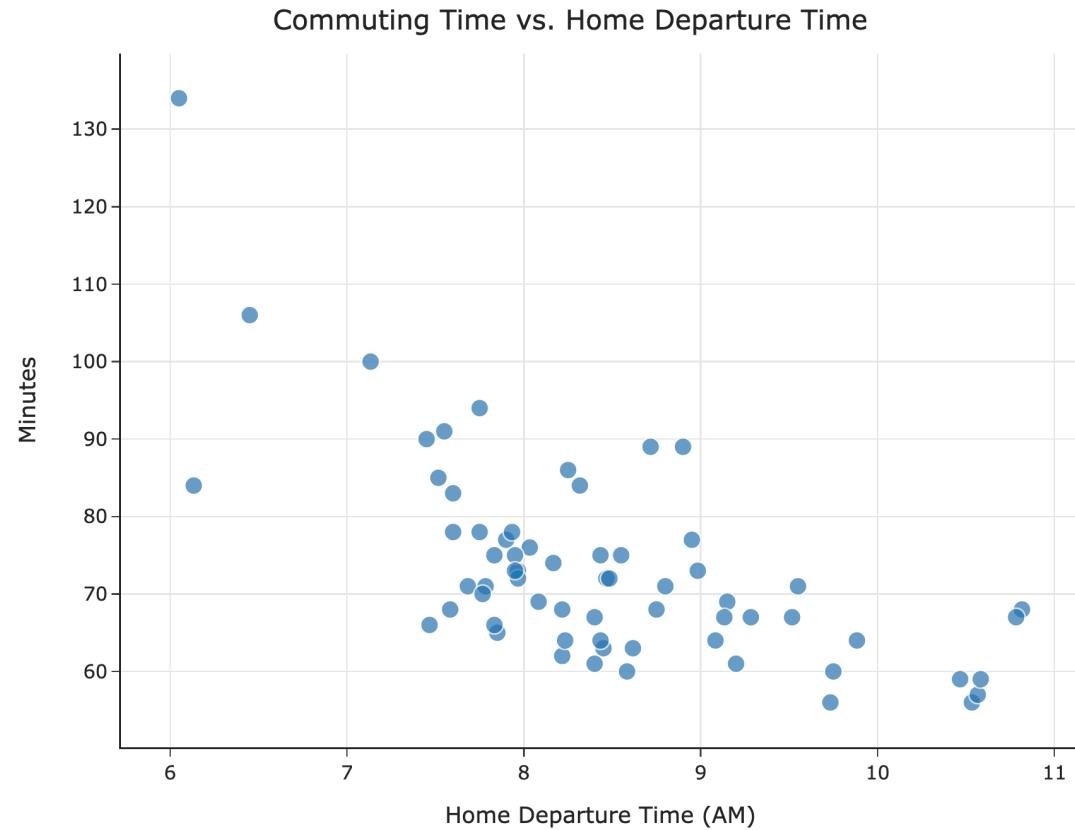
Key idea: Different loss functions lead to different best predictions, h^* !

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
L_{sq}	mean	yes	no	yes
L_{abs}	median	no	yes	no
L_{∞}	midrange	yes	no	no
$L_{0,1}$	mode	no	yes	no

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

What's next?

Towards simple linear regression



- In Lecture 1, we introduced the idea of a hypothesis function, $H(x)$.
- We've focused on finding the best **constant model**, $H(x) = h$.
- Now that we understand the modeling recipe, we can apply it to find the best **simple linear regression model**, $H(x) = w_0 + w_1x$.
- This will allow us to make predictions that aren't all the same for every data point.

The modeling recipe

1. Choose a model.
2. Choose a loss function.
3. Minimize average loss to find optimal model parameters.

