Lecture 4

Comparing Loss Functions

DSC 40A, Fall 2025



Announcements

e Homework 1is due on Friday, October 10th.

e Remember that in, general, groupwork worksheets are released on Sunday and due
Monday.

e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course website.


https://dsc40a.com/calendar

Agenda

e Recap: Empirical risk minimization.

e Choosing a loss function.
o The role of outliers.

e Other loss functions



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

mization




Goal

We had one goal in Lectures 2 and 3: given a dataset of values from the past, find the
best constant prediction to make.

Yy = (2 Yo = 90 ys = 61 Ys = 89 Y5 = 92

Key idea: Different definitions of "best" give us different "best predictions."



The modeling recipe
In Lectures 2 and 3, we made two full passes through our "modeling recipe."

1. Choose a model.
H(z)=nh
2. Choose a loss function.
LSQ_(yia h) = (y; — h)2 Lavs(yis h) = |ys — h‘2
3. Minimize average loss to find optimal model parameters.

h*x = mean(y1,...,Yn) hx = median(yq,...,Yn)



Empirical risk minimization
e The formal name for the process of minimizing average loss is empirical risk
minimization.
e Another name for "average loss" is empirical risk.

e When we use the squared loss function, L (y;, h) = (y; — h)? the
corresponding empirical risk is mean squared error:

Ryq(h) = & i(yz —h)?

n

e When we use the absolute loss function, L.ns(yi, h) = |y; — h

, the corresponding
empirical risk is mean absolute error:

1
Rabs(h) — Z Z ‘yz — h‘
1=1



Empirical risk minimization, in general

Key idea: If L(y;, h) is any loss function, the corresponding empirical risk is:

R(B) = =3 L(y.h)
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Now what?

e We know that, for the constant model H(x) = h, the mean minimizes mean
squared error.

e We also know that, for the constant model H(x) = h, the median minimizes mean
absolute error.

e How does our choice of loss function impact the resulting optimal prediction?
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Comparing the mean and median

Consider our example dataset of 5 commute times.
Yy = 12 y2 = 90 y3 = 61 Ys = 85
As of now, the median is 85 and the mean is 80.

What if we add 200 to the largest commute time, 927
Y1 = 12 y2 = 90 ys = 61 Yqs = 89

Now, the median is but the mean is

Key idea: The mean is quite sensitive to outliers.

Ys = 92

ys = 292
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Outliers
, but (y4 — h)?%is 100 times (y3 — h)>.

Below, |y4 — h|is 10 times as big as |ys — h

1 2 3 4 5 6 7 8 9 10 11 12 13 14

The result is that the mean is "pulled” in the direction of outliers, relative to the median.

T T l T T
1 2 3 4

6 7 8 9 10 11 12 13 14

Ul o oo ses ses s

As a result, we say the median is robust to outliers. But the mean was easier to solve
for. 15



Frequency

Distribution of Commuting Time

60 70 80 90 100 110

Minutes

T
120

130

e
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Example: Income inequality

Average vs median income

Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by
the currencies' respective purchasing_power (PPP).

Average income in USD || Median income

0 10k 20k 30k 40k 50k 60k
Luxembourg

Norway
Switzerland
Australia
United States
Canada
Austria
Iceland
Denmark

Belgium



Balance points

Both the mean and median are "balance points" in the distribution.

Ul e oo oo ses ses =

1 2 3 4 6 7 8 9 10 11 12

* The mean is the point where > " ;(y; — h) = 0.

e The median is the point where # (y; < h) = # (y; > h).

13

14
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Why stop at squared loss?

Empirical Risk, R(h) Derivative of Empirical Risk, - R(h) Minimizer

% Z?:l |yz o h’ % ( Zyi<h 1 — Zyi>h ]-) median
% Z?ﬂ (yi — h)2 _72 2?21 (ys — h) mean
% 2?21 Yy — h’?’ 277

% Z?:l (y: — h)4 2?7

% > ic1(yi — h) Ho0 27?7
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Generalized L, loss

Forany p > 1, define the L, loss as follows:
Lp(yis k) = |yi — h|”

The corresponding empirical risk is:

n

Ry(h) = & > lyi — h|?

n

e When p =1, h* = Median(y1,y2,---,Yn)-
e When p =2, h* = Mean(y1,vs,---,Yn)-
e What about when p = 37

e \WWhat about when p — 00?
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What value does h™* approach, as p — 00?

h*

Consider the dataset 1, 2, 3, 14:

On the left:
e The z-axis is p.

e The y-axis is h*, the optimal constant
prediction for L, loss:

10

20

T o h* = a,rglfmnz Z ly; — h|?
i—1

w - e
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The midrange minimizes average L ., loss!

On the previous slide, we saw that as p — oo, the minimizer of mean L, loss
approached the midpoint of the minimum and maximum values in the dataset, or the
midrange.

|
I
© 0|0
I
I
T T 1 T T
1 2 3 4

1

e Asp — oo, Ry(h) = > 7", |ys — h|P minimizes the "worst case” distance from

any data point". (Read more here).

6 7 8 9 10 11 12 13 14

Ul o s sos ses e

e |f your measure of "good" is "not far from any one data point", then the midrange
is the best prediction.
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https://mathworld.wolfram.com/L-Infinity-Norm.html

Another example: 0-1 loss

Consider, for example, the 0-1 loss:

0 yi=h
L(),l(y,,;,h) — {1 zz # h

The corresponding empirical risk is:

1 n
Roa(h) = — > Loa(yi h)
1=1
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T

Question =

Answer at q.dsc40a.com

1[0 y;=h
Ro’l(h):EZ{l i#h

i=1
Suppose y1, Y2, - - - , Yn, are all unique. What is Ry 1(y1)?
¢ A.O.
e B 1
=
o C. 1

e D.1.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Minimizing empirical risk for 0-1 loss

Roa(h) = 13

n 4

{

0 y;=nh
1 yi#h
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Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h*!

Always Robust to

Loss Minimizer Differentiable?

Unique? Outliers?
Ly, mean yes no X yes
L.« median no X  vyes no X
L., midrange yes no X no X
Lo1 mode no X  yes no X

The optimal predictions, h*, are all summary statistics that measure the center of the
dataset in different ways.
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Towards simple linear regression

e |In Lecture 1, we introduced the idea of
a hypothesis function, H(x).

Commuting Time vs. Home Departure Time

sof e We've focused on finding the best
constant model, H(z) = h.
% "1 e Now that we understand the modeling
L o’ . recipe, we can apply it to find the best
" .:-.-, b . simple linear regression model,
.,-e;§.°: .:'. : '5, D s H(z) = wy + wiz.
Yt e This will allow us to make predictions
é ’ : 5 that aren't all the same for every data

Home Departure Time (AM)

point.



The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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