






Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
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Recap: Empirical risk minimization
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We had one goal in Lectures 2 and 3: given a dataset of values from the past, find the
best constant prediction to make.

Key idea: Different definitions of "best" give us different "best predictions."
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In Lectures 2 and 3, we made two full passes through our "modeling recipe."

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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The formal name for the process of minimizing average loss is empirical risk
minimization.

Another name for "average loss" is empirical risk.

When we use the squared loss function, , the
corresponding empirical risk is mean squared error:

When we use the absolute loss function, , the corresponding
empirical risk is mean absolute error:
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Key idea: If  is any loss function, the corresponding empirical risk is:
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Choosing a loss function
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We know that, for the constant model , the mean minimizes mean
squared error.

We also know that, for the constant model , the median minimizes mean
absolute error.

How does our choice of loss function impact the resulting optimal prediction?
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Consider our example dataset of 5 commute times.

As of now, the median is 85 and the mean is 80.

What if we add 200 to the largest commute time, ?

Now, the median is                                  but the mean is                        !

Key idea: The mean is quite sensitive to outliers.
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Below,  is 10 times as big as , but  is 100 times .

The result is that the mean is "pulled" in the direction of outliers, relative to the median.

As a result, we say the median is robust to outliers. But the mean was easier to solve
for. 15
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Both the mean and median are "balance points" in the distribution.

The mean is the point where .

The median is the point where .
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Empirical Risk, Derivative of Empirical Risk, Minimizer
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For any , define the  loss as follows:

The corresponding empirical risk is:

When , .

When , .

What about when ?

What about when ?
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Consider the dataset :

On the left:

The -axis is .

The -axis is , the optimal constant
prediction for  loss:
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On the previous slide, we saw that as , the minimizer of mean  loss
approached the midpoint of the minimum and maximum values in the dataset, or the
midrange.

As ,  minimizes the "worst case" distance from
any data point". (Read more here).

If your measure of "good" is "not far from any one data point", then the midrange
is the best prediction.
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