Lecture 4

Comparing Loss Functions

DSC 40A, Fall 2025



Announcements

e Homework 1is due on Friday, October 10th.

e Remember that in, general, groupwork worksheets are released on Sunday and due
Monday.

e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course website.



Agenda

e Recap: Empirical risk minimization.

e Choosing a loss function.
o The role of outliers.

e Other loss functions
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Remember, you can always ask questions at g.dsc40a.com!
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Goal

We had one goal in Lectures 2 and 3: given a dataset of values from the past, find the
best constant prediction to make.

Yy = (2 Yo = 90 ys = 61 Ys = 89 Y5 = 92

Key idea: Different definitions of "best" give us different "best predictions."
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The modeling recipe
In Lectures 2 and 3, we made two full passes through our "modeling recipe."

1. Choose a model.

H((L‘) —h @OV\JJaf\* WJL') ‘('U‘"\ \“\\M
o , A< (kno ur\)
2. Choose a loss function. T
qu(yi, h) = (yz — h)2 Labs(yia h) — ‘yz _ h‘

3. Minimize average loss to find optimal model parameters.

h*x = mean(y1,...,Yn) hx = median(y1,...,Yn)
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Empirical risk minimization

e The formal name for the process of minimizing average loss is empirical risk
minimization.

e Another name for "average loss" is empirical risk.

e When we use the squared loss function, L (y;, h) = (y; — h)? the

corresponding empirical risk is mean squared error:
1 n
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e When we use the absolute loss function, L.ns(yi, h) = |y; — h

, the corresponding
empirical risk is mean absolute error:
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Empirical risk minimization, in general

Key idea: If L(y;, h) is any loss function, the corresponding empirical risk is:

R(B) = =3 L(y.h)
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Now what?

e We know that, for the constant model H(x) = h, the mean minimizes mean
squared error.

e We also know that, for the constant model H(x) = h, the median minimizes mean
absolute error.

e How does our choice of loss function impact the resulting optimal prediction?
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Comparing the mean and median

Consider our example dataset of 5 commute times.
Yy = 12 y2 = 90 y3 = 61 Ys = 85
As of now, the median is 85 and the mean is 80.

What if we add 200 to the largest commute time, 927
Y1 = 12 y2 = 90 ys = 61 Yqs = 89

Now, the median is g-l-/'l/ 'S but the mean is

Key idea: The mean is quite sensitive to outliers.

< S
Ys = 92
-+2,00
\7
Y5 = 292
120 !
209 _
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Outliers

h|is 10 times as big as |y3 — k|, but (y4 — h)?%is 100 times (y3 — h)>.

Below,
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The result is that the mean is "pulled” in the direction of outliers, relative to the median.
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As a result, we say the median is robust to outliers. But the mean was easier to solve
for.
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Example: Income inequality

Average vs median income o e cted

Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by \3 Oh“' ’.U'J
the currencies' respective purchasing_power (PPP). :)

Average income in USD || Median income /\
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Balance points

Both the mean and median are "balance points" in the distribution.
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e .The mean is the point where ZZ 1( —h) =0. Z (9(‘“‘\‘. [ = Z I}jibl‘ l
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. The median is the point where # (y; < h) = # (yi > h).,
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Why stop at squared loss?

Empirical Risk, R(h) Derivative of Empirical Risk, - R(h) Minimizer
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Generalized L, loss

Forany p > 1, define the L, loss as follows:

Ly(yi, h) = |y; — h|

The corresponding empirical risk is:

1 n
Ry(h) = o, > lyi — h|?
1=1

e When p =1, h* = Median(y1,y2,---,Yn)-

e When p =2, h* = Mean(y1,y2,---,Yn)-

e What about when p = 37

e \WWhat about when p — 00?
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What value does h™* approach, as p — 00?
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J
7 - ! : !
® 0,0 l ; o
: ! v
6- 1 2 3 4 5 6 7 " 8 9 1o 11 12 13 14
d
5 \ On the left: midrasge
4- (p 21, S) ® The z-axis is p.
3- e The y-axis is h*, the optimal constant
] ( A 7.5) prediction for L, loss:
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The midrange minimizes average L, loss!

locs

On the previous slide, we saw that as p — oo, the minimizer of mean L, loss
approached the midpoint of the minimum and maximum values in the dataset, or the
midrange.
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e Asp — oo, Ry(h) = > 7", |ys — h|P minimizes the "worst case” distance from

any data point". (Read more here).

6 7 8 9 10 11 12 13 14
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e |f your measure of "good" is "not far from any one data point", then the midrange

is the best prediction. Me&n =§ , wWors+ cast Aistunes hu-s/=y
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