Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025



Announcements

e Homework 1 is due Friday night.
e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course
website.


https://dsc40a.com/calendar

Agenda

e 0-1loss
e Prediction rules using features
o Simple linear regression.

o Minimizing mean squared error for the simple linear model.
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Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/

Another example: 0-1 loss

Consider, for example, the 0-1 loss:

0 yi=h
Loal(yiah) — {1 zz # h

The corresponding empirical risk is:

1 n
Roa(h) = — > Loa(yi h)
1=1
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Answer at q.dsc40a.com

1[0 y;=h
Ro’l(h):EZ{l i#h

i=1
Suppose y1, Y2, - - - , Yn, are all unique. What is Ry 1(y1)?
¢ A.O.
e B 1
=
o C. 1

e D.1.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Minimizing empirical risk for 0-1 loss

1 f0 yi=nh
Ro’l(h)_ﬁz{l yi # h

1=1



Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h*!

Always Robust to

Loss Minimizer Differentiable?

Unique? Outliers?
Ly, mean yes no X yes
L.« median no X  vyes no X
L., midrange yes no X no X
Lo1 mode no X  yes no X

The optimal predictions, h*, are all summary statistics that measure the center of the
dataset in different ways.






Towards simple linear regression

e |In Lecture 1, we introduced the idea of
a hypothesis function, H(x).

Commuting Time vs. Home Departure Time

sof e We've focused on finding the best
constant model, H(z) = h.
% "1 e Now that we understand the modeling
L o’ . recipe, we can apply it to find the best
" .:-.-, b . simple linear regression model,
.,-e;§.°: .:'. : '5, D s H(z) = wy + wiz.
Yt e This will allow us to make predictions
é ’ : 5 that aren't all the same for every data

Home Departure Time (AM)

point.



Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted v.
Parameters define the relationship between the input and output of a hypothesis

function.

The simple linear regression model, H(x) = wy 4+ wyx, has two parameters: wy and

w1.

H((x)=-14+12x H(x)=170-11x
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The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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Features

A feature is an attribute of the data — a piece of information.

e Numerical: maximum allowed speed, time of departure
e Categorical: day of week

e Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table).

Departure time Day of week Accident on route Commute time

7:05 Monday yes 101
8:03 Tuesday no 87
10:20 Wednesday yes 79

8:30 Thursday no 76
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Variables

e The features, x, that we base our predictions on are called
predictor variables.

e The quantity, y, that we're trying to predict based on
these features is called the response variable, dependent variable or target.

e We are trying to predict our commute time as a function of departure time.
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Modeling

e We believe that commute time is a function of departure time.

e |.e, thereis a function H so that:
commute time ~ H(departure time)

e H is called a hypothesis function or prediction rule.

e Qur goal: find a good prediction rule, H.
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Possible Hypothesis Functions
e H(departure time) = 90 - 10 -(departure time-7)
e Hy(departure time) = 90 - (departure time-8)?
e Hjs(departure time) = 20 + 6-departure time

These are all valid prediction rules.
Some are better than others.
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Comparing predictions

e How do we know which is best: Hy, Hy, H3?

e We gather data from n days of commute. Let xi be experience, yi be

salary:

(departure time; , commute time;) (wl, yl)

(departure times , commute times) (:cz, yz)
—

(departure time,, , commute time,,) (T, Yn)

e See which rule works better on data.
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Minutes

1304

120~

110

Commuting Time vs. Home Departure Time

Home Departure Time (AM)
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Question = Answer at g.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

e A yes

e B.no

Minutes

1304

1204

100

90

80

704

60

Commuting Time vs. Home Departure Time

T T T T T
6 7 8 9 10

Home Departure Time (AM)

T
11
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Question = Answer at g.dsc40a.com
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Problem

We can make mean absolute error very small, even zero!
But the function will be weird.

This is called overfitting.

Remember our real goal: make good predictions on data we haven't seen.
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Solution

e Don't allow H to be just any function.

e Require that it has a certain form.

e Examples:

©)

©)

®)

©)

Linear: H(z) = wo + w.

Quadratic: H(x) = wo + w11 + wax”.

Exponential: H(z) = woe"”.

Constant: H(z) = wy.

2
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Comparing predictions

Commuting Time vs. Home Departure Time

1304
120

110

Minutes

Home Departure Time (AM)
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Minimizing mean squared error for the simple linear model

e We'll choose squared loss, since it's the easiest to minimize.

e Our goal, then, is to find the linear hypothesis function H*(x) that minimizes
empirical risk:

1 « 9
Rua(H) = — 3 (yi — H(:)
i—1
e Since linear hypothesis functions are of the form H(xz) = wy + w1z, we can re-
write Rgq as a function of wg and wy:

qu(’wo,wl) — i z”: (yi — (wo + ’wlxi))2

n 4

e How do we find the parameters wj and w] that minimize Ry, (wg, w1)?
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