Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025



Announcements

e Homework 1 is due Friday night.
e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course
website.



Agenda

e 0-1loss
e Prediction rules using features
o Simple linear regression.

o Minimizing mean squared error for the simple linear model.
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Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.



Another example: 0-1 loss

Consider, for example, the 0-1 loss:

0 yi=h
Loal(yiah) — {1 zz # h

The corresponding empirical risk is:

1 n
Roa(h) = — > Loa(yi h)
1=1
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Answer at g.dsc40a.com
O y; = h

Suppose Y1, Y2, - - - , Y, are all unique. What is R 1(y1)?
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Minimizing empirical risk for 0-1 loss
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Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h*!

Always Robust to

Loss Minimizer Differentiable?

Unique? Outliers?
Ly, mean yes no X yes
L.« median no X  vyes no X
L., midrange yes no X no X
Lo1 mode no X  yes no X

The optimal predictions, h*, are all summary statistics that measure the center of the
dataset in different ways.






Towards simple linear regression

e |In Lecture 1, we introduced the idea of
a hypothesis function, H(x).

Commuting Time vs. Home Departure Time

130

e We've focused on finding the best
constant model, H(x) = h.
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e Now that we understand the modeling
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simple linear regression model|,
H(z) = wy + wyx.

e This will allow us to make predictions
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that aren't all the same for every data
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point.
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Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted v.
Parameters define the relationship between the input and output of a hypothesis

function.

The simple linear regression model, H(x) = wy 4+ wyx, has two parameters: wy and
w1.
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The modeling recipe

1. Choose a model.

B'QO‘UFQ ¢ Con stant R(X)’ln Nou - sLR H(‘O‘ Ve * VU, X

2. Choose a loss function. ( ' ,
I“L(Bz/ Fo) = (9 =Fka) Lot {oest0)= Ty
oty | &/ /
3. Minimize average loss to find optimal model parameters. \/
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Features

A feature is an attribute of the data — a piece of information.

e Numerical: maximum allowed speed, time of departure

e Categorical: day of week

e Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table).
X

7:05
8:03
10:20
8:30

Departure time

Day of week Accident on route

Monday
Tuesday
Wednesday
Thursday

yes
no
yes

no
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Commute time
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Variables

e The features, x, that we base our predictions on are called
predictor variables.

e The quantity, y, that we're trying to predict based on
these features is called the response variable, dependent variable or target.

e We are trying to predict our commute time as a function of departure time.
J f X

#t

14



Modeling

e We believe that commute time is a function of departure time.

e |.e, thereis a function H so that:
commute time ~ H(departure time) .

e His caﬁéd a hypothesis function or prediction rule.

e Qur goal: find a good prediction rule, H.
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Possible Hypothesis Functions

e H(departure time) = 90©10 -(departure time-7)
e Hy(departure time) = 90 - (departure time-8)?
e H3(departure time) = 20 })6-departure time

These are all valid prediction rules.
Some are better than others.
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Comparing predictions

e How do we know which is best: Hy, Hy, H3?

e We gather data from n days of commute. Let xi be experience, yi be

salary:

(departure time; , commute time;) (wl, yl)

(departure times , commute times) (:cz, yz)
—

(departure time,, , commute time,,) (T, Yn)

e See which rule works better on data.
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130+

120~

110

Commuting Time vs. Home Departure Time

Home Departure Time (AM)

“-1 SLng "‘3 h
the best
~ hoy to ?/M‘MH‘Bz

HO(V 2 ) -ﬁw’ 004’/}‘\“'
j°{‘4+l.o4|(

18



Qa‘u LDC) H&) = ,ld,’ -—K&;)I
Question = Answer at g.dsc40a.com
Given the data below, is there a prediction rule H which has zero mean absolute error?

S Km\s (l—l) = 3, Z’S"H(X()\
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Question = Answer at g.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

e A yes

e B.no
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Problem

s¢UartA
We can make mean absolute error very small, even zero!

But the function will be weird.

This is called overfitting.

Remember our real goal: make good predictions on data we haven't seen.
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Solution

e Don't allow H to be just any function.
e Require that it has a certain form.

e Examples:

o Linear: H(xz) = wo + wiz. < this  wd

o Quadratic: H(z) = wg + wiz1 + wax?. ; Non [Near ,

o Exponential: H(z) = wpe"
o Constant: H(z) = wy. <—  |ast ek
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Minimizing mean squared error for the simple linear model

e We'll choose squared loss, since it's the easiest to minimize.

e Our goal, then, is to find the linear hypothesis function H*(x) that minimizes
empirical risk:

Ru) = =3 (v~ H(a)

e Since linear hypothesis functions are of the form H(xz) = wy + w1z, we can re-
write Rgq as a function of wg and wy:

1 n
func, of qu(if_?.’t.u_l) o Z (i = (wo + wi2:))’

n < _— ——

1=1

e How do we find the parameters wj and w] that minimize Ry (wg, w1)?
MuWivariale calculus
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Loss surface

For the constant model, the graph What does the graph of Rsq(wg,w1) look
of Rsq(h) looked like a parabola. like for the simple linear regression model?
Ryq(h) = £((72 = h)* + (90 — h)? + (61 — h)* + (85 — h)* + (92 — h)*)
600 8000 -
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Minimizing multivariate functions

e Our goal is to find the parameters w, and w7 that minimize mean squared error:

qu(w07w1) — i i (y’b _ (wO T wlwi))Q

n

* Rgqis afunction of two variables: wg and wj.

e To minimize a function of multiple variables:
o Take partial derivatives with respect to each variable.

o Set all partial derivatives to 0.

o Solve the resulting system of equations.

o Ensure that you've found a minimum, rather than a maximum or saddle point
(using the second derivative test for multivariate functions).
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Example

Find the point (x, y, z) at which the following function is minimized.

flz,y) =2z —8cx+y* +6y—7



