

Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025

Announcements

- Homework 1 is due **Friday night**.
- Look at the office hours schedule [here](#) and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- 0-1 loss
- Prediction rules using features
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Question 🤔

Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Another example: 0-1 loss

Consider, for example, the 0-1 loss:

$$L_{0,1}(y_i, h) = \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^n L_{0,1}(y_i, h)$$

Question 🤔

Answer at q.dsc40a.com

$$R_{0,1}(h) = \boxed{\frac{1}{n}} \sum_{i=1}^n \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases} \quad \leftarrow$$

Suppose y_1, y_2, \dots, y_n are all unique. What is $R_{0,1}(y_1)$?

- A. 0.
- B. $\frac{1}{n}$.
- C. $\frac{n-1}{n}$.
- D. 1.

$$R_{0,1}(h=y_1)$$

Proportion of all pts different from y_1

If $h \neq y_i$ for any y_i :

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^n 1 = \frac{1}{n} \underbrace{(1+1+\dots+1)}_{n \text{ times}} = \frac{n}{n} = 1$$

Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^n \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

= proportion of pts not equal to h

$R_{0,1}$ is minimized for the value that is most frequent (appears the most) in the data

$$h^* = \text{Mode}(y_1, y_2, \dots, y_n)$$

isn't necessarily unique (Ex: $\{1, 2, 3, 1, 4\}$
 $\{1, 2, 2, 3, 3, 5\}$)

Summary: Choosing a loss function

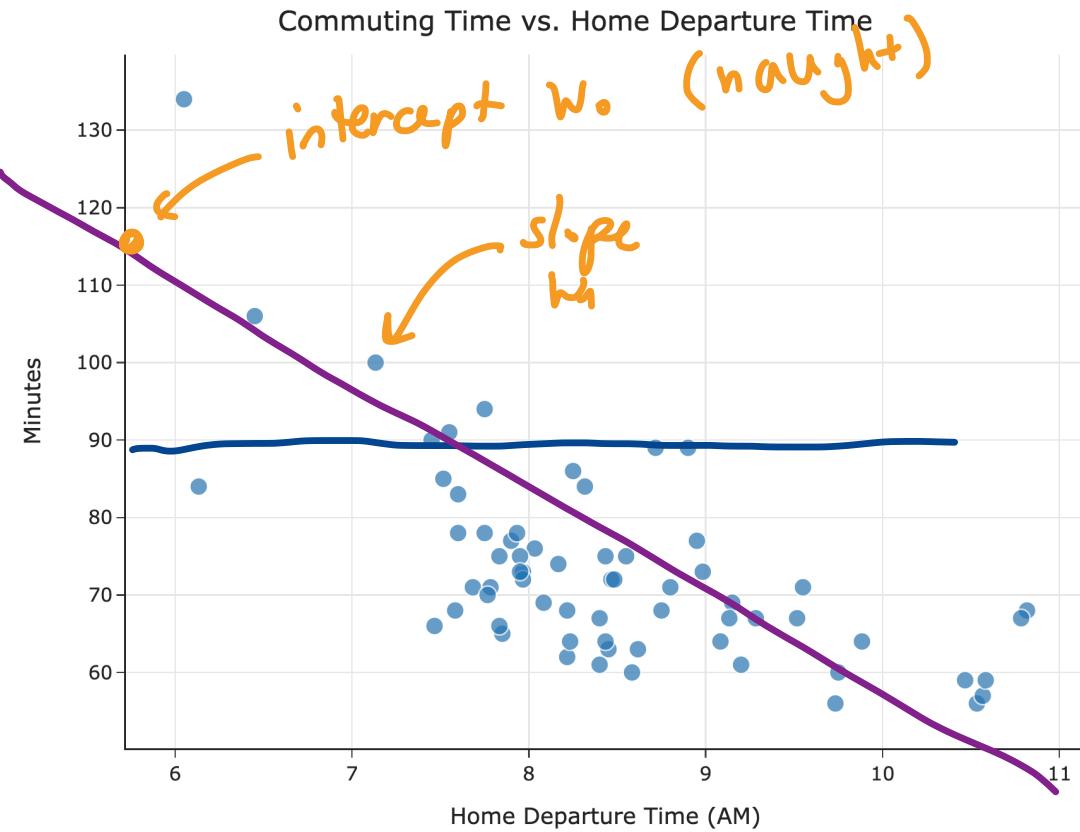
Key idea: Different loss functions lead to different best predictions, h^* !

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
L_{sq}	mean	yes	no	yes
L_{abs}	median	no	yes	no
L_{∞}	midrange	yes	no	no
$L_{0,1}$	mode	no	yes	no

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

Predictions with features

Towards simple linear regression



- In Lecture 1, we introduced the idea of a hypothesis function, $H(x)$.
- We've focused on finding the best **constant model**, $H(x) = \underline{h}$.
- Now that we understand the modeling recipe, we can apply it to find the best **simple linear regression model**, $H(x) = \underline{w_0} + \underline{w_1}x$.
- This will allow us to make predictions that aren't all the same for every data point.

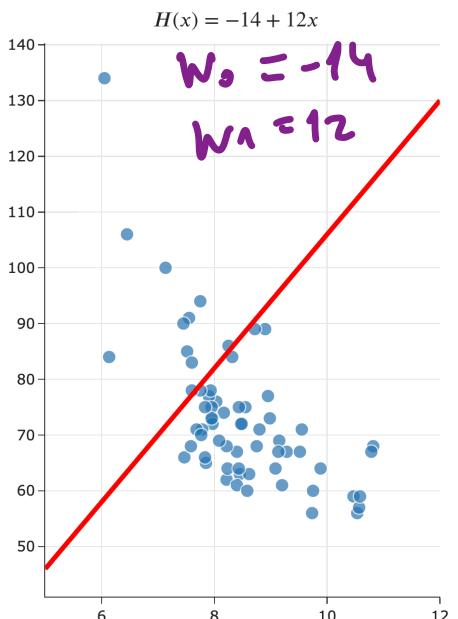
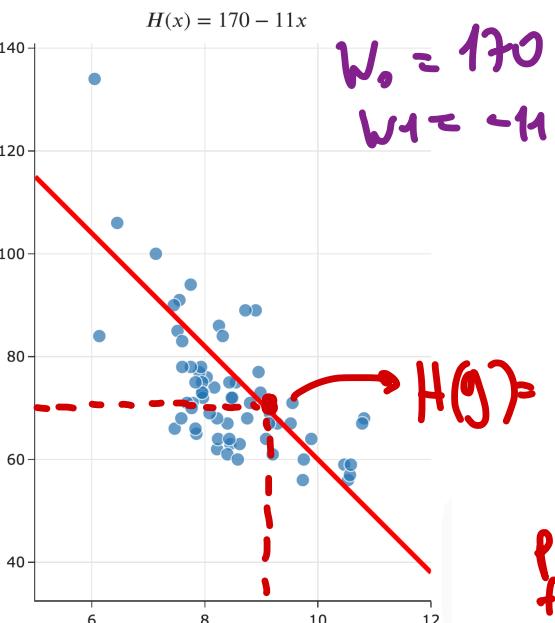
$H(\text{departure time}) \rightarrow \text{predicted commute time}$

Recap: Hypothesis functions and parameters

A hypothesis function, H , takes in an x as input and returns a predicted y .

Parameters define the relationship between the input and output of a hypothesis function.

The simple linear regression model, $H(x) = \underline{w_0} + \underline{w_1}x$, has two parameters: w_0 and w_1 .



We want to find
best slope w_1^*
best intercept w_0^*

$H(g) = 170 - 11 \cdot g =$
 $170 - 99 = 71$
 predicted commute
 for leaving at 9am

The modeling recipe

1. Choose a model.

Before : Constant $f(x) = h$

Now: SLR $H(x) = w_0 + w_1 x$

2. Choose a loss function.

$$L_{sq}(y_i, H(x_i)) = (y_i - H(x_i))^2$$

actual \swarrow \searrow prediction

$$L_{abs}(y_i, H(x_i)) = |y_i - H(x_i)|$$

3. Minimize average loss to find optimal model parameters.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

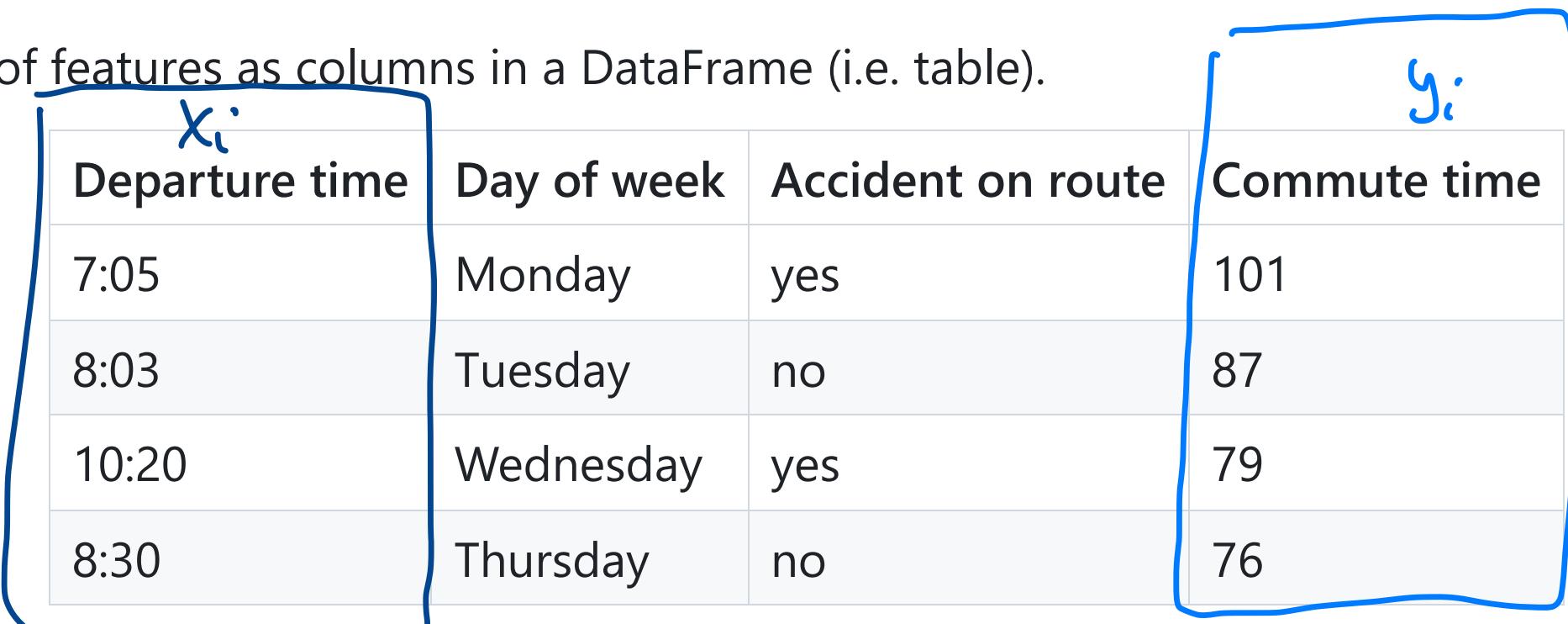
$$R_{abs}(H) = \frac{1}{n} \sum_{i=1}^n |y_i - H(x_i)|$$

Features

A **feature** is an attribute of the data – a piece of information.

- **Numerical**: maximum allowed speed, time of departure
- **Categorical**: day of week
- **Boolean**: was there a car accident on the road?

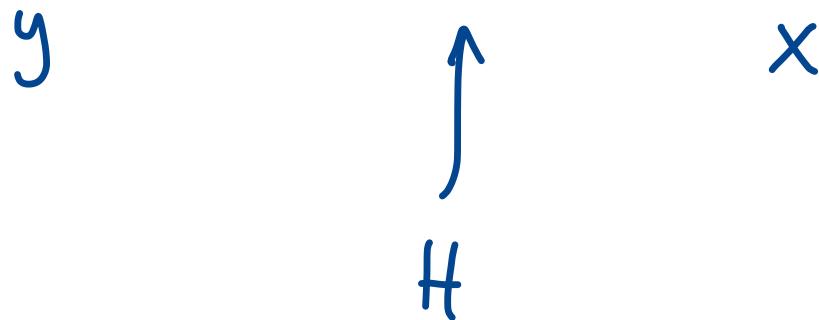
Think of features as columns in a DataFrame (i.e. table).



x_i	Day of week	Accident on route	y_i
7:05	Monday	yes	101
8:03	Tuesday	no	87
10:20	Wednesday	yes	79
8:30	Thursday	no	76

Variables

- The features, x , that we base our predictions on are called predictor variables.
- The quantity, y , that we're trying to predict based on these features is called the response variable, dependent variable or target.
- We are trying to predict our commute time as a function of departure time.



Modeling

- We believe that commute time is a function of departure time.

- I.e., there is a function H so that:

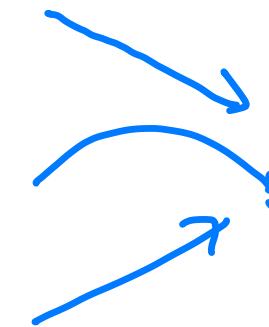
commute time $\approx H(\text{departure time})$

- H is called a hypothesis function or prediction rule.

- Our goal: find a good prediction rule, H .

Possible Hypothesis Functions

- $H_1(\text{departure time}) = 90 - 10 \cdot (\text{departure time} - 7)$ ←
- $H_2(\text{departure time}) = 90 - (\text{departure time} - 8)^2$ ←
- $H_3(\text{departure time}) = 20 + 6 \cdot \text{departure time}$ ←



These are all valid prediction rules.

Some are better than others.

Comparing predictions

- How do we know which is best: H_1 , H_2 , H_3 ?
- We gather data from n days of commute. Let x_i be experience, y_i be salary:

(departure time₁ , commute time₁) $\quad (x_1, y_1)$

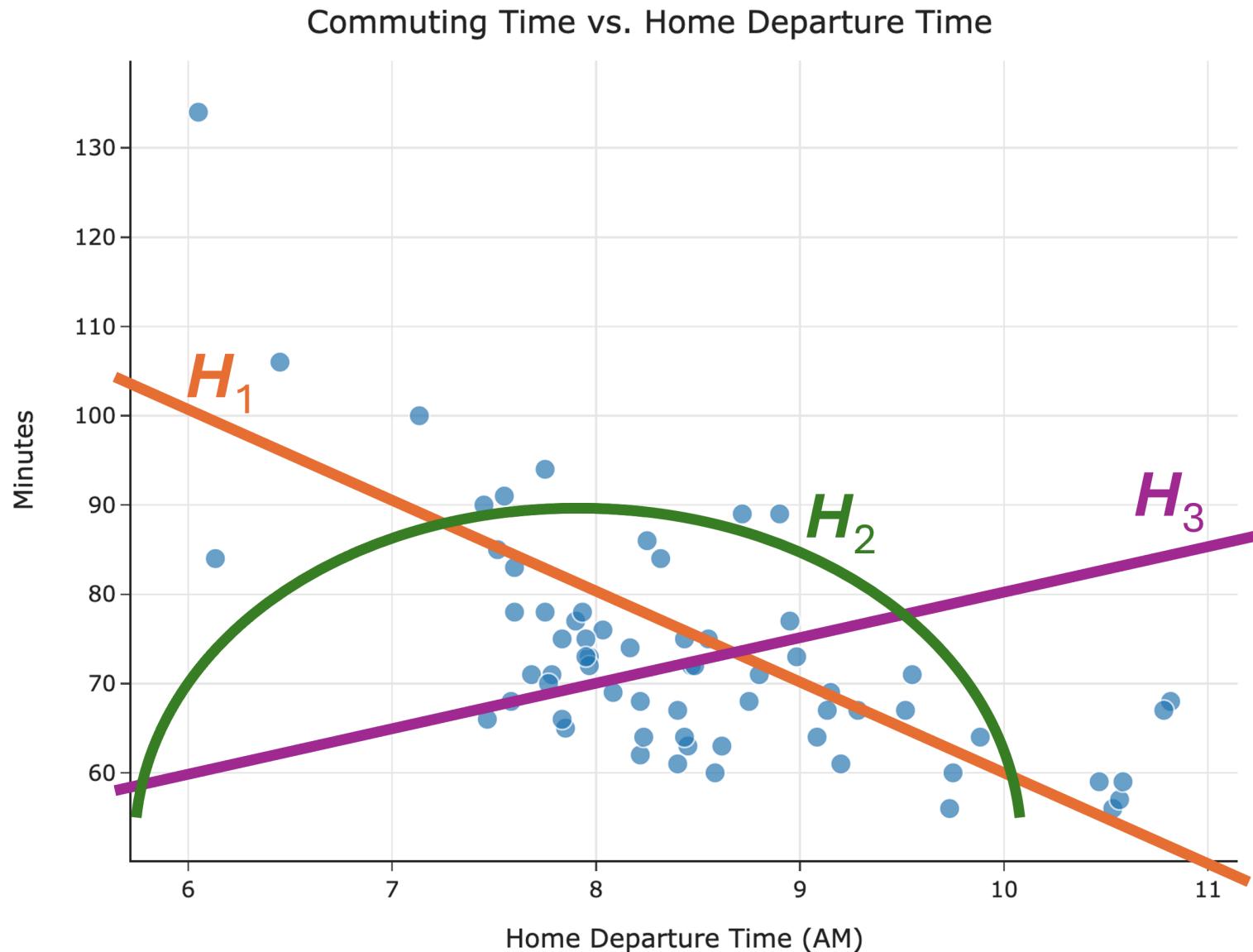
(departure time₂ , commute time₂) $\quad (x_2, y_2)$

...

\rightarrow

(departure time _{n} , commute time _{n}) $\quad (x_n, y_n)$

- See which rule works better on data.



H_1 seems to be
the best
→ how to quantify?
How to find optimal
solution?

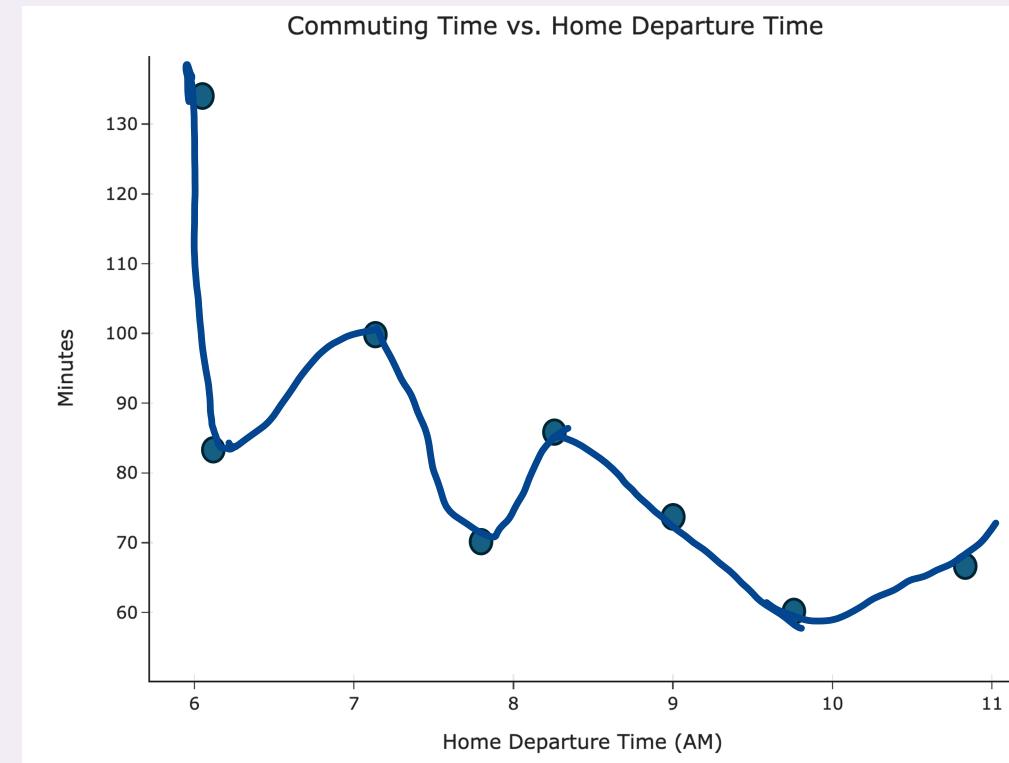
$$l_{abs}(y_i, H(x_i)) = |y_i - H(x_i)|$$

Question 🤔 Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

- A. yes
- B. no

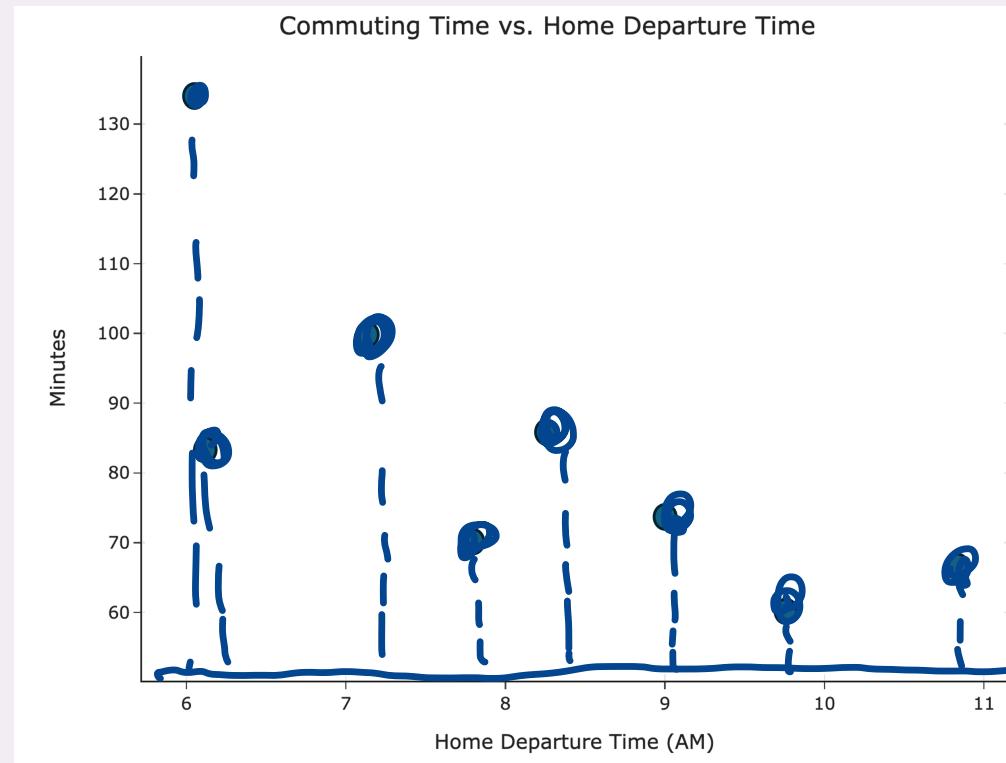
$$R_{abs}(H) = \frac{1}{n} \sum |y_i - H(x_i)|$$



Question 🤔 Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

- A. yes
- B. no



Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:

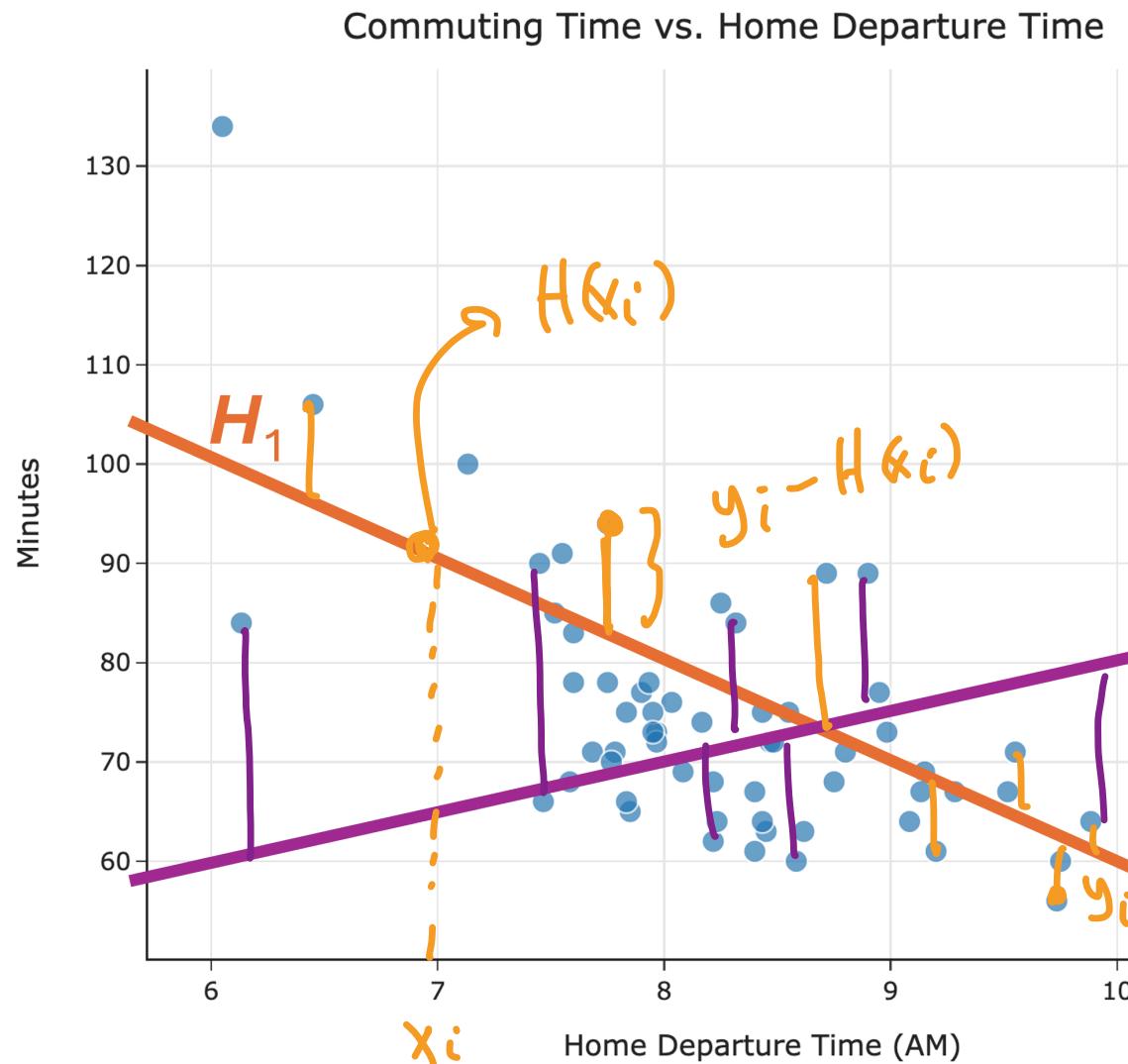
- Linear: $H(x) = w_0 + w_1 x$. \leftarrow this week
- Quadratic: $H(x) = w_0 + w_1 x_1 + w_2 x^2$. \leftarrow nonlinear, in a few weeks
- Exponential: $H(x) = w_0 e^{w_1 x}$.
- Constant: $H(x) = w_0$. \leftarrow last week

Goal: linear relationship between x_i and y_i

Find the best linear model

\Rightarrow finding w_0^t, w_1^t

Comparing predictions



$$R(H_3) > R(H_1)$$

$$\frac{1}{n} \sum_i l(y_i, H_3(x_i)) > \frac{1}{n} \sum_i l(y_i, H_1(x_i))$$

l_{abs}

l_{sq}

$R(H_{abs})$ averages the lengths of the error lines

prediction model

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

$w_0 + w_1 x_i$

- Since linear hypothesis functions are of the form $H(x) = w_0 + w_1 x$, we can rewrite R_{sq} as a function of w_0 and w_1 :

func. of $\underline{w_0}, \underline{w_1}$
two parameters

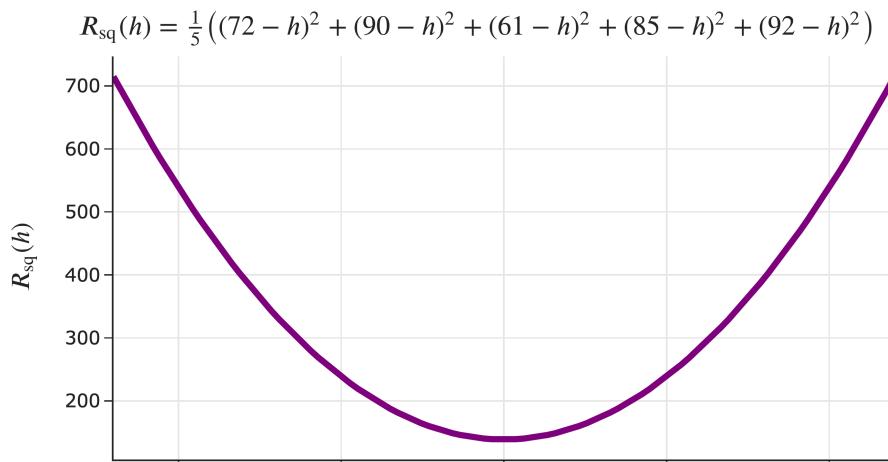
$$R_{\text{sq}}(\underline{w_0}, \underline{w_1}) = \frac{1}{n} \sum_{i=1}^n (y_i - (\underline{w_0} + \underline{w_1} x_i))^2$$

- How do we find the parameters w_0^* and w_1^* that minimize $R_{\text{sq}}(w_0, w_1)$?

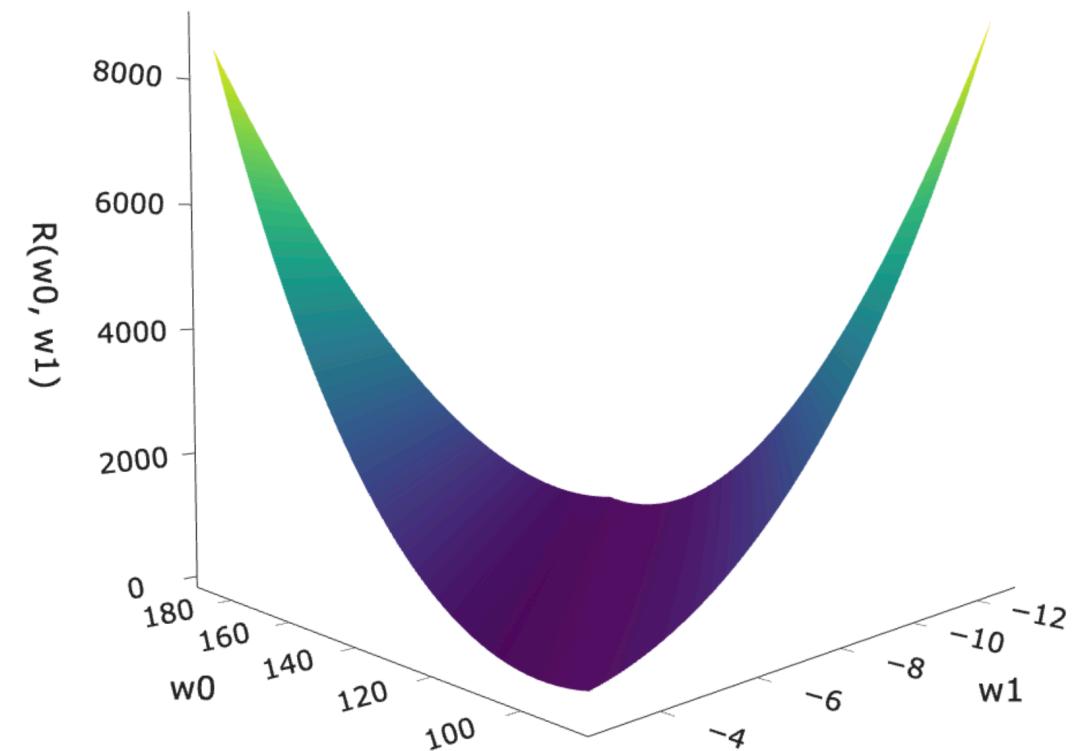
Multivariate calculus

Loss surface

For the constant model, the graph of $R_{\text{sq}}(h)$ looked like a parabola.



What does the graph of $R_{\text{sq}}(w_0, w_1)$ look like for the simple linear regression model?



Minimizing multivariate functions

- Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

- R_{sq} is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0.
 - Solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the [second derivative test](#) for multivariate functions).

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x, y) = x^2 - 8x + y^2 + 6y - 7$$