

Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025

Agenda

- Simple linear regression.
- Correlation.
- Interpreting the formulas.
- Connections to related models.

Least squares solutions

- Our goal was to find the parameters w_0^* and w_1^* that minimized:

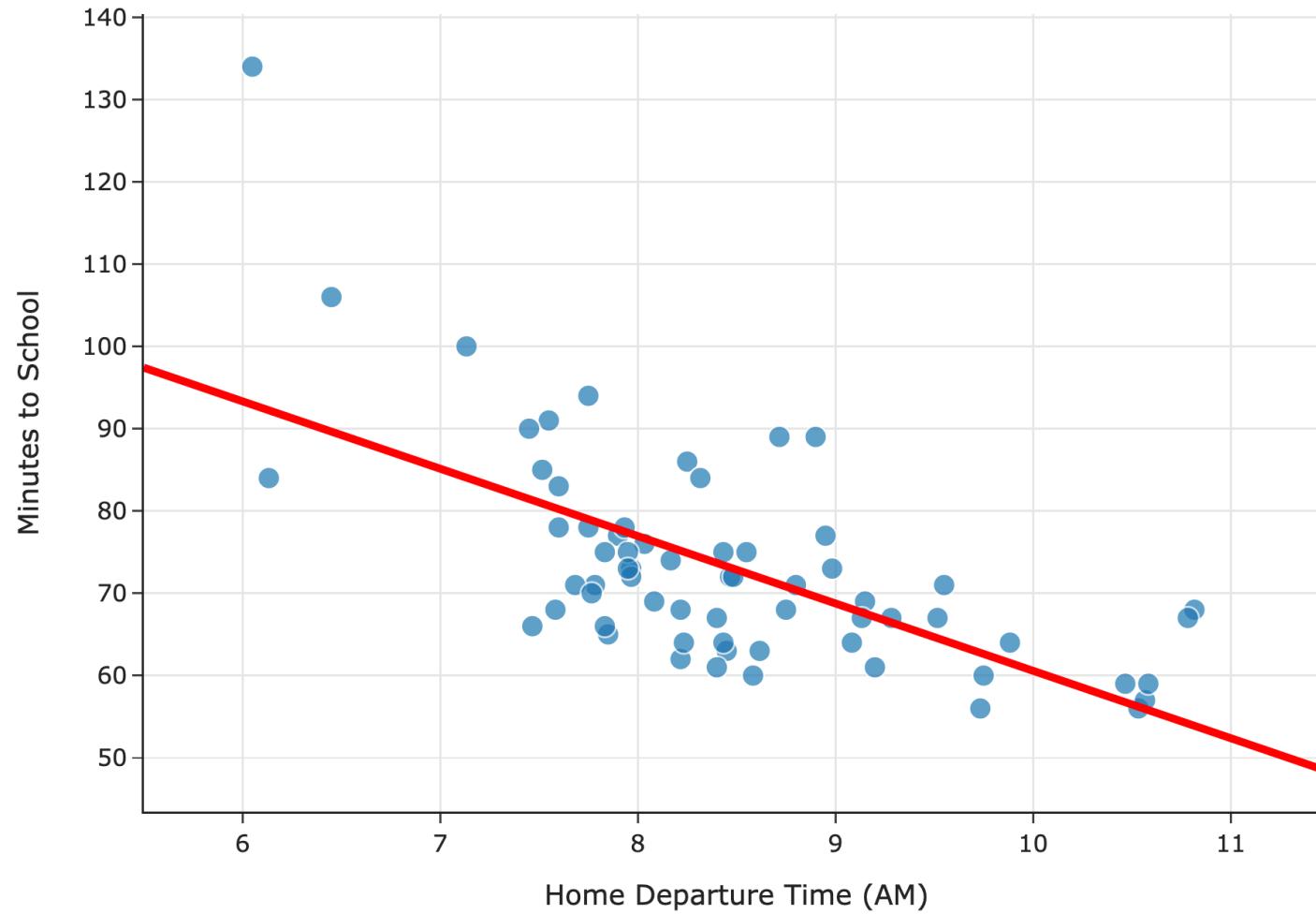
$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

- To do so, we used calculus, and we found that the minimizing values are:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad w_0^* = \bar{y} - w_1^* \bar{x}$$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the **regression line**.

Predicted Commute Time = $142.25 - 8.19 * \text{Departure Hour}$



Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models.
- Learn how to build regression models with **multiple inputs**.
 - To do this, we'll need linear algebra!

Question 🤔

Answer at q.dsc40a.com

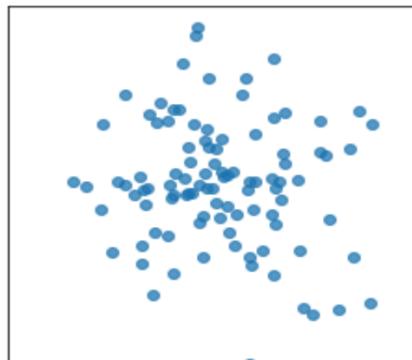
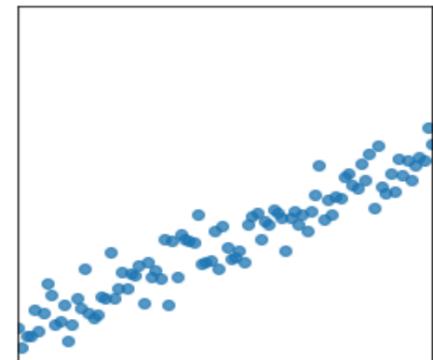
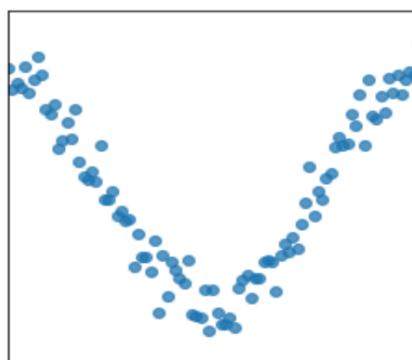
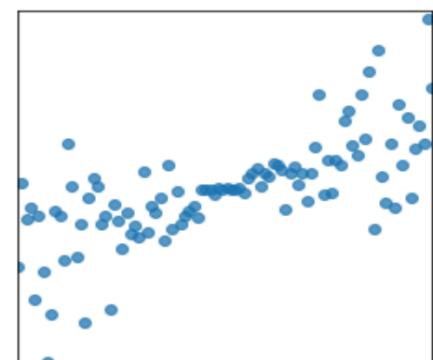
Consider a dataset with just two points, $(2, 5)$ and $(4, 15)$. Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

- A. $w_0^* = 2, w_1^* = 5$
- B. $w_0^* = 3, w_1^* = 10$
- C. $w_0^* = -2, w_1^* = 5$
- D. $w_0^* = -5, w_1^* = 5$

Correlation

Quantifying patterns in scatter plots

- In DSC 10, you were introduced to the idea of the **correlation coefficient**, r .
- It is a measure of the strength of the **linear association** of two variables, x and y .
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.



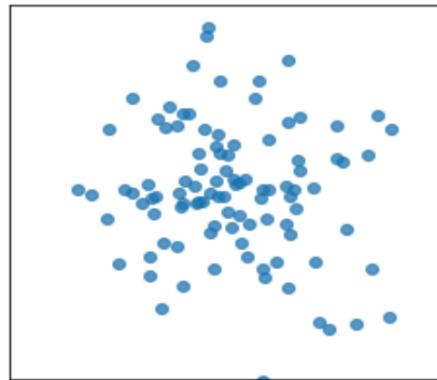
The correlation coefficient

- The correlation coefficient, r , is defined as the average of the product of x and y , when both are in standard units.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i in standard units is $\frac{x_i - \bar{x}}{\sigma_x}$.
- The correlation coefficient, then, is:

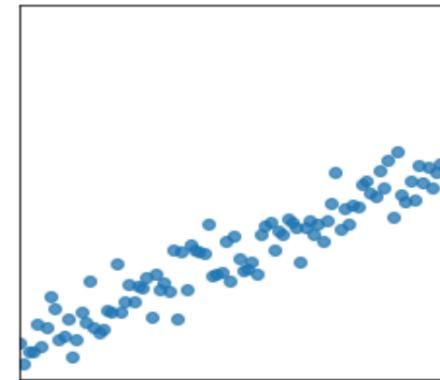
$$r = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

The correlation coefficient, visualized

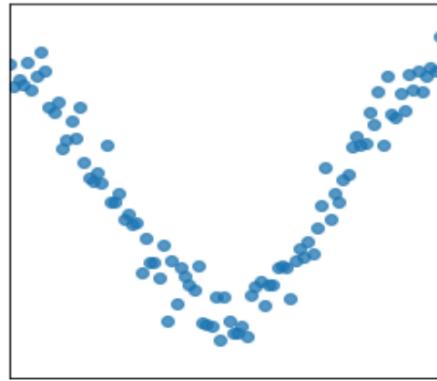
$r = -0.121$



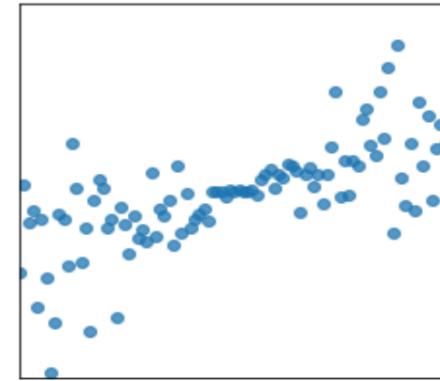
$r = 0.949$



$r = 0.052$



$r = 0.704$



Another way to express w_1^*

- It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of r !

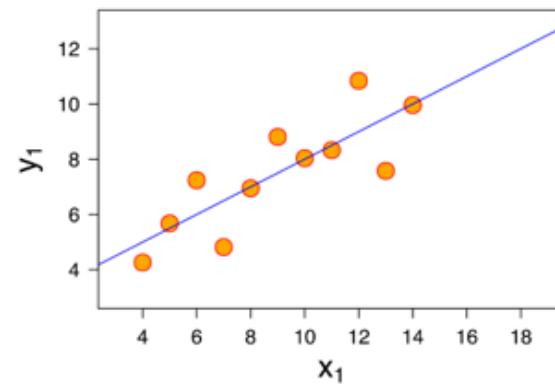
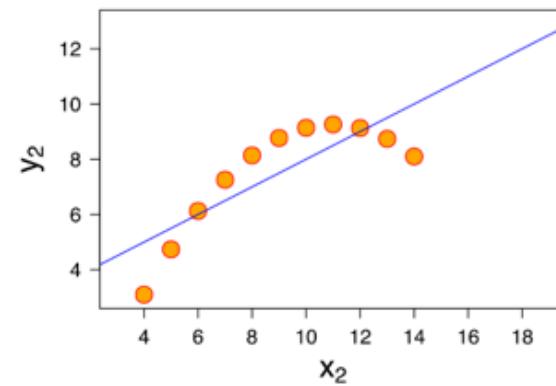
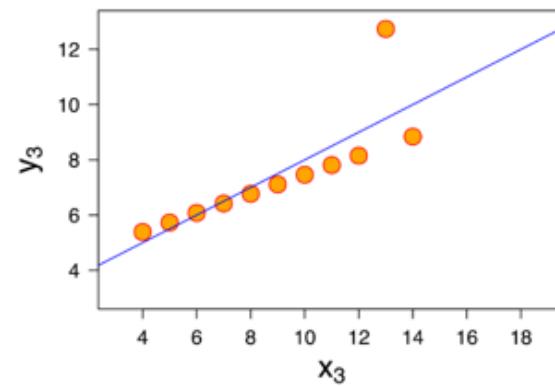
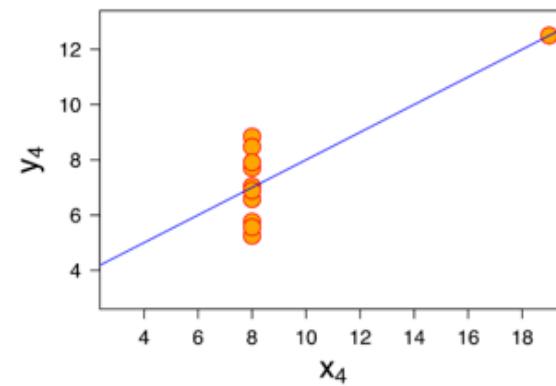
$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

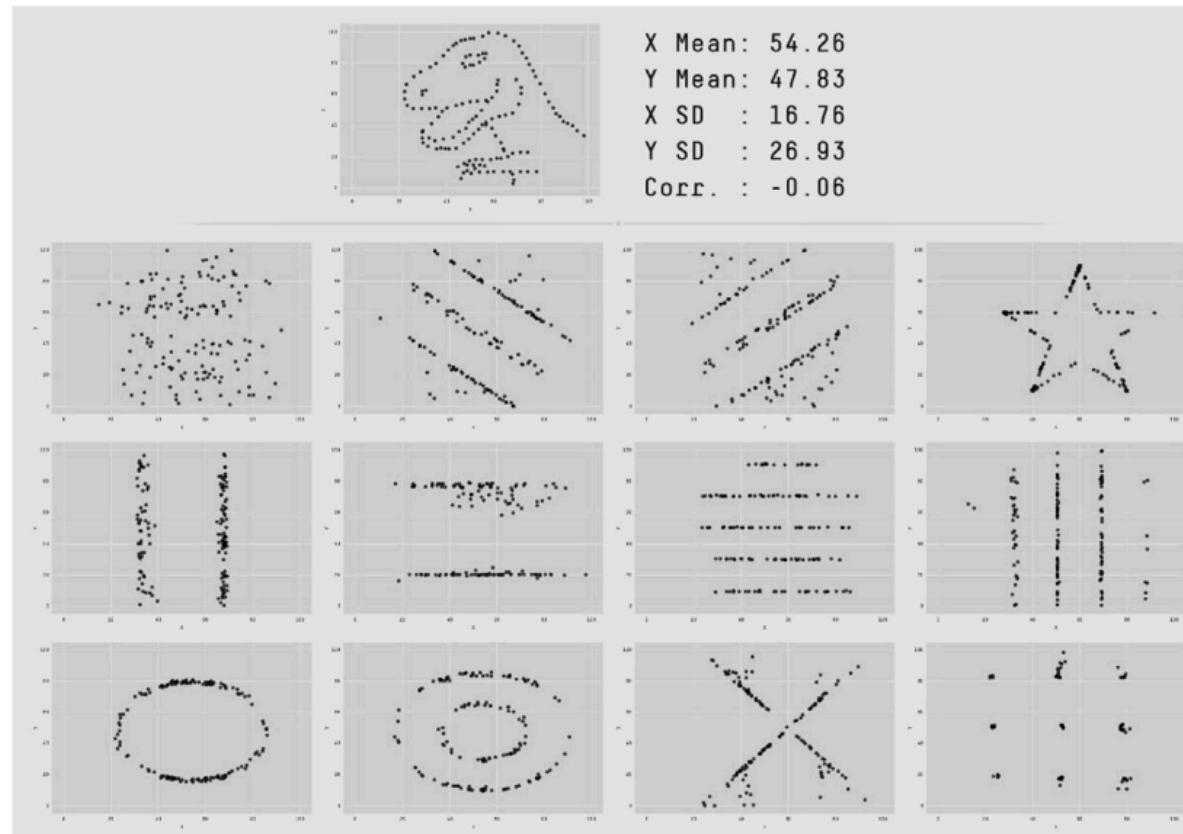
$$w_1^* = r \frac{\sigma_y}{\sigma_x} \quad w_0^* = \bar{y} - w_1^* \bar{x}$$

Proof that $w_1^* = r \frac{\sigma_y}{\sigma_x}$

Dangers of correlation



Dangers of correlation



Interpreting the formulas

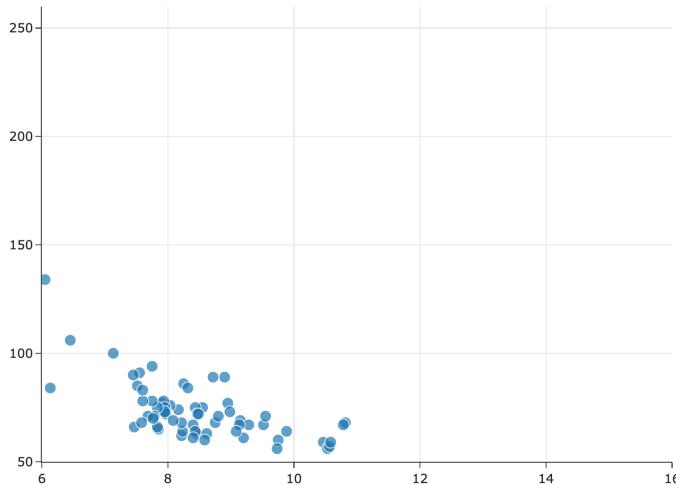
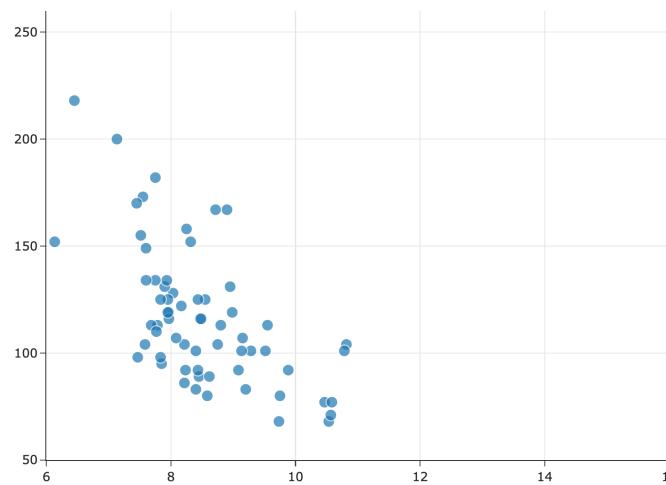
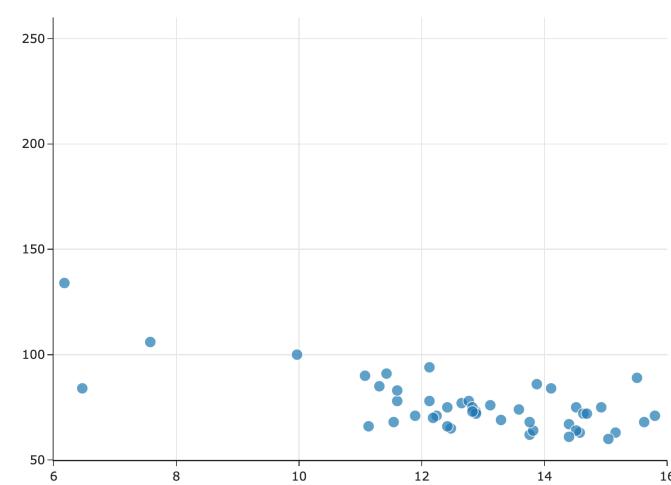
Interpreting the slope

$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$

- The units of the slope are **units of y per units of x** .
- In our commute times example, in $H(x) = 142.25 - 8.19x$, our predicted commute time **decreases by 8.19 minutes per hour**.

Interpreting the slope

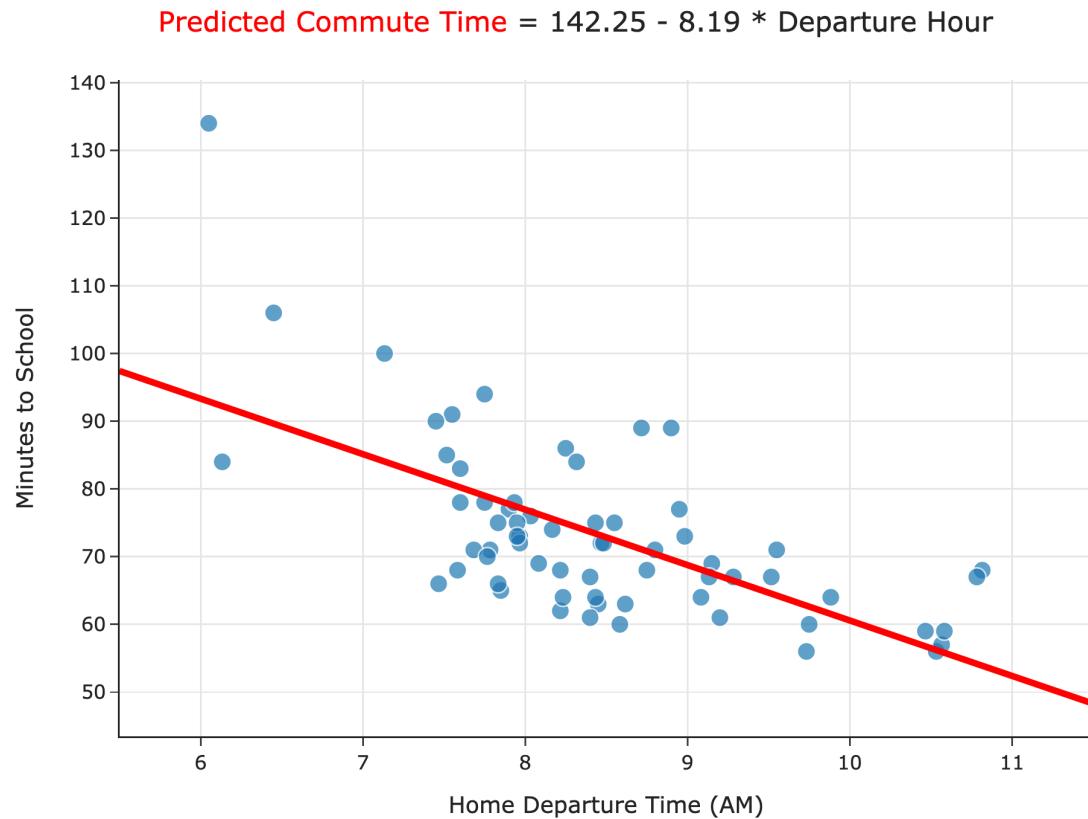
$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$



- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r 's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

$$w_0^* = \bar{y} - w_1^* \bar{x}$$



- What are the units of the intercept?
- What is the value of $H^*(\bar{x})$?

Question 🤔

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

Correlation and mean squared error

- **Claim:** Suppose that w_0^* and w_1^* are the optimal intercept and slope for the regression line. Then,

$$R_{\text{sq}}(w_0^*, w_1^*) = \sigma_y^2(1 - \mathbf{r}^2)$$

- That is, the **mean squared error** of the regression line's predictions and the correlation coefficient, \mathbf{r} , always satisfy the relationship above.
- Even if it's true, why do we care?
 - In machine learning, we often use both the **mean squared error** and \mathbf{r}^2 to compare the performances of different models.
 - If we can prove the above statement, we can show that **finding models that minimize mean squared error** is equivalent to **finding models that maximize \mathbf{r}^2** .

Proof that $R_{\text{sq}}(w_0^*, w_1^*) = \sigma_y^2(1 - r^2)$

Connections to related models

Question 🤔

Answer at q.dsc40a.com

Suppose we chose the model $H(x) = w_1x$ and squared loss.

What is the optimal model parameter, w_1^* ?

- A.
$$\frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
- B.
$$\frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$
- C.
$$\frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$
- D.
$$\frac{\sum_{i=1}^n y_i}{\sum_{i=1}^n x_i}$$

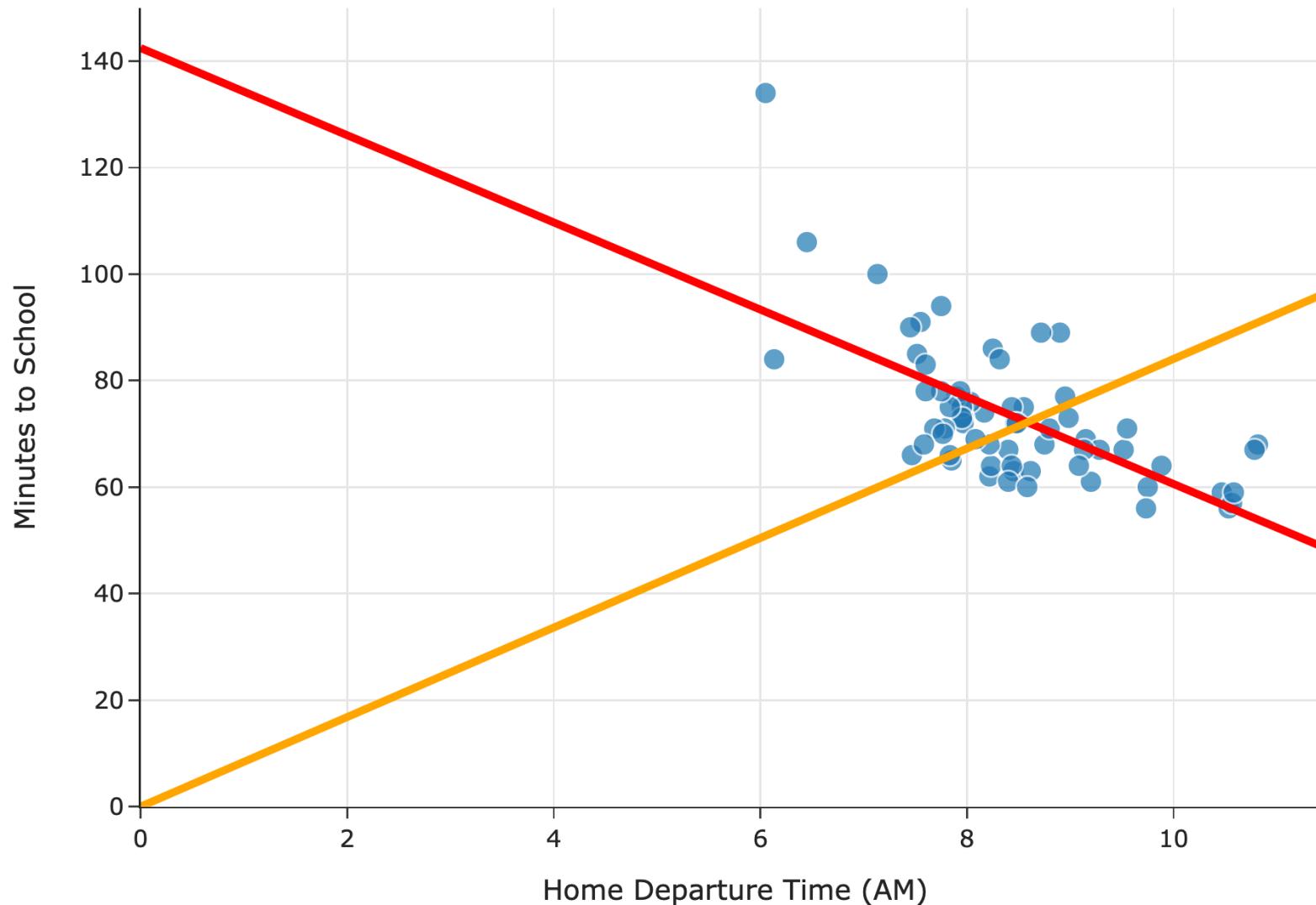
Exercise

Suppose we chose the model $H(x) = w_1x$ and squared loss.

What is the optimal model parameter, w_1^* ?

Predicted Commute Time = $142.25 - 8.19 * \text{Departure Hour}$

Predicted Commute Time = $8.41 * \text{Departure Hour}$



Exercise

Suppose we choose the model $H(x) = w_0$ and squared loss.

What is the optimal model parameter, w_0^* ?

Comparing mean squared errors

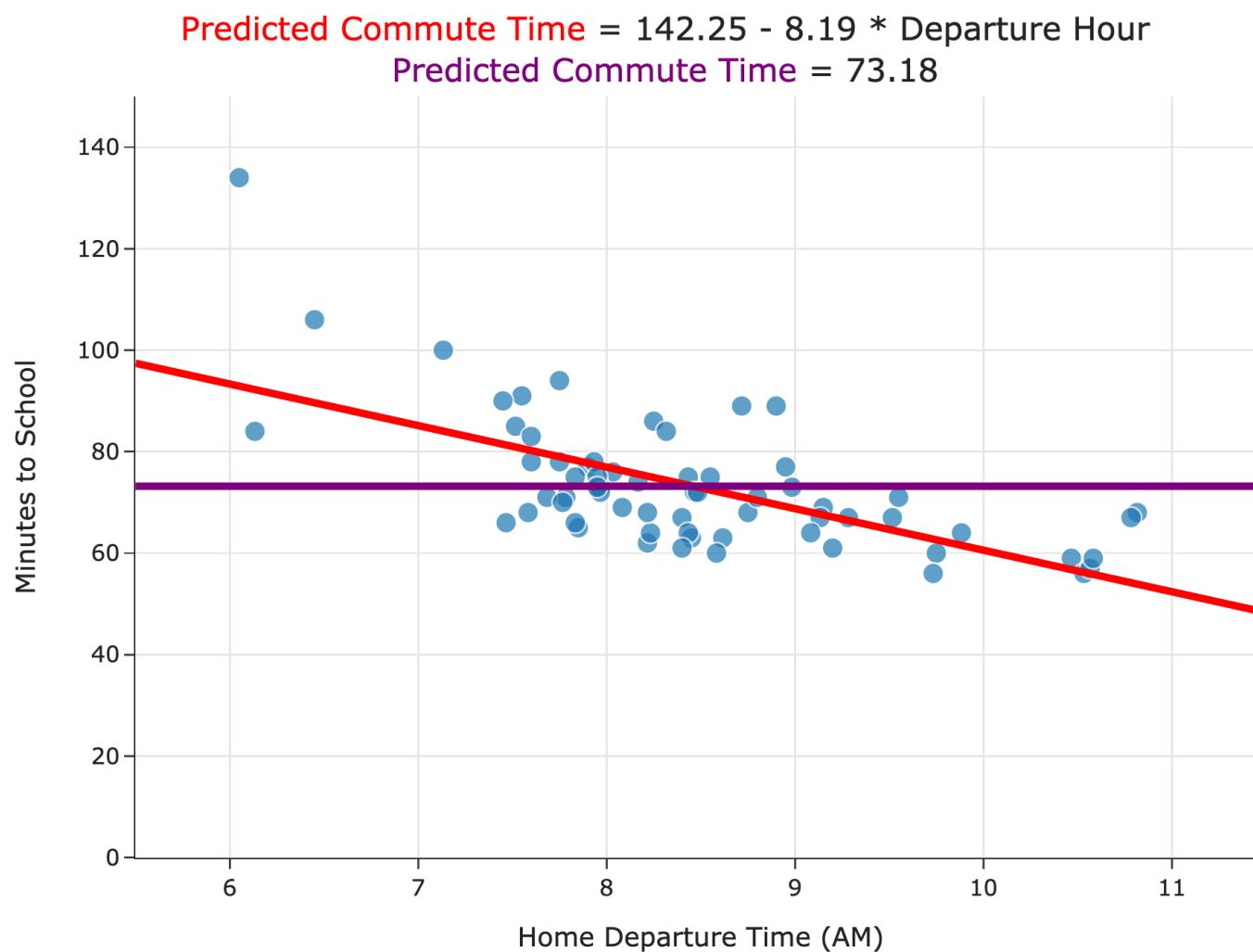
- With both:
 - the constant model, $H(x) = h$, and
 - the simple linear regression model, $H(x) = w_0 + w_1x$,

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

- Which model minimizes mean squared error more?

Comparing mean squared errors

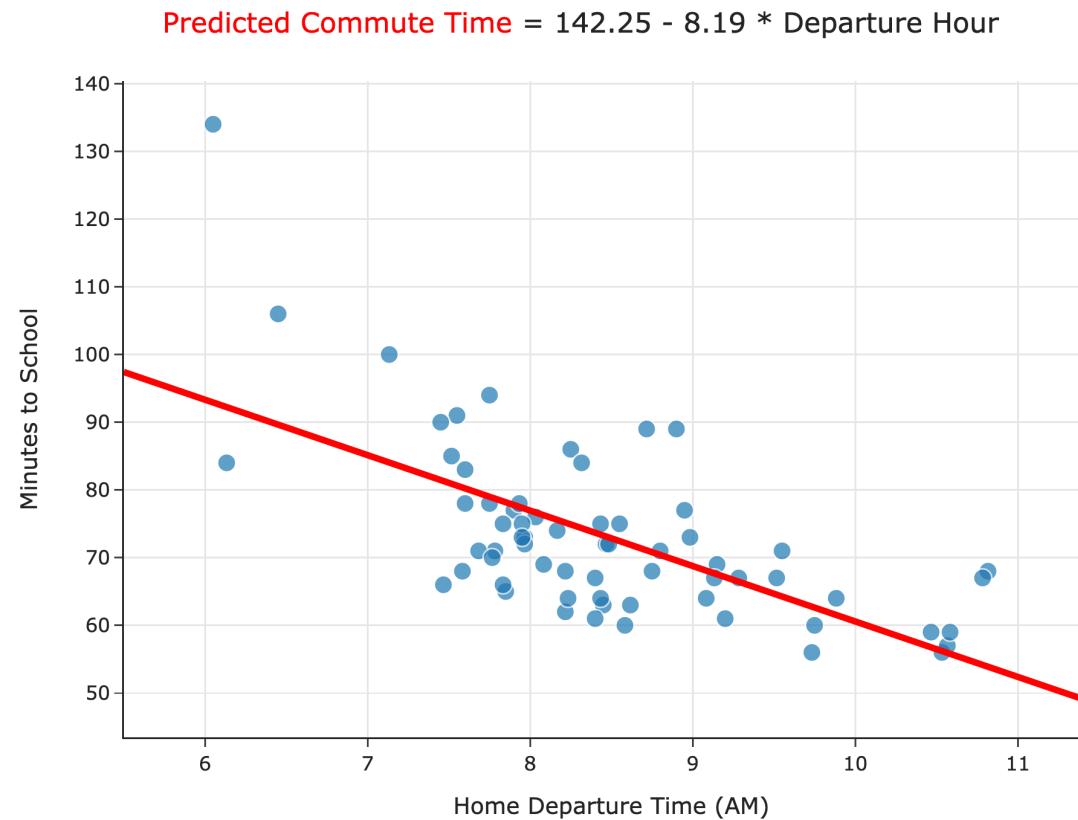


$$\text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

- The MSE of the best simple linear regression model is ≈ 97 .
- The MSE of the best constant model is ≈ 167 .
- The simple linear regression model is a more flexible version of the constant model.

Causality

Solving for best linear model for commute



Can we conclude that leaving later **causes** you to get to school quicker?

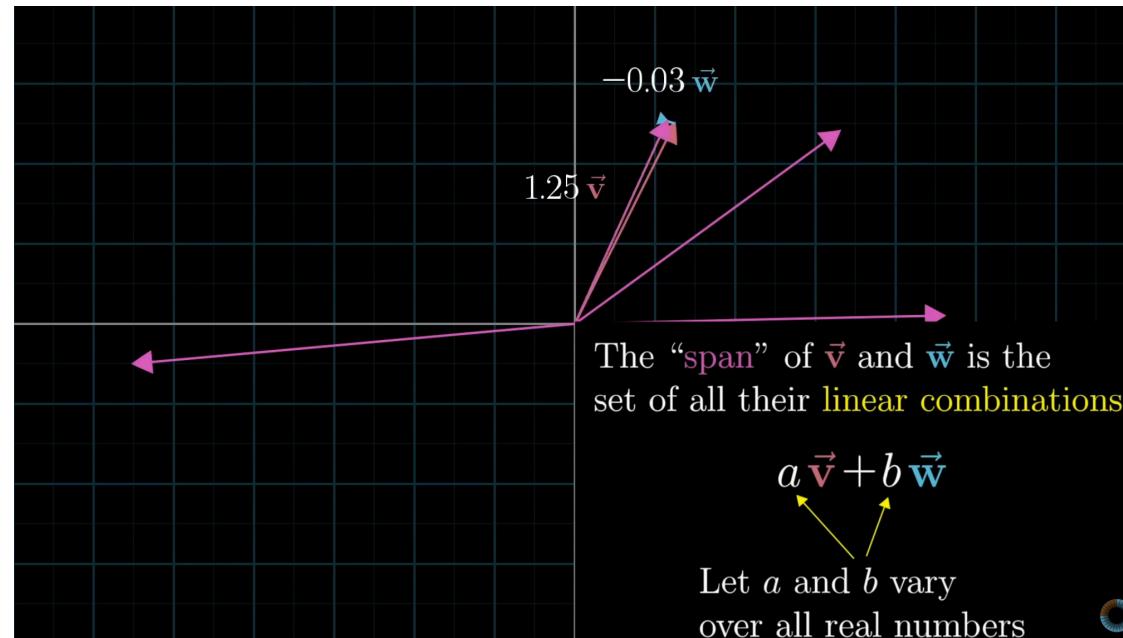
Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - Are non-linear, e.g. $H(x) = w_0 + w_1x + w_2x^2$.
- Before we dive in, let's review.

Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the **span** of two or more vectors.
- To jump start our review of linear algebra, let's start by watching [this video by 3blue1brown](#).



Next time

- We'll review the necessary linear algebra prerequisites.
- We'll then start to formulate the problem of minimizing mean squared error for the simple linear regression model **using matrices and vectors**.
- We'll send some relevant linear algebra review videos on Ed.