

Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025

Agenda

- Simple linear regression. \rightarrow Least squares solution
- Correlation.
- Interpreting the formulas.
- Connections to related models.
- HW1 due tonight
- HW2 will be released today
- Submit regrade requests \rightarrow no need for emails
- Can ask private questions on Campuswine!

Least squares solutions

- Our goal was to find the parameters w_0^* and w_1^* that minimized:

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

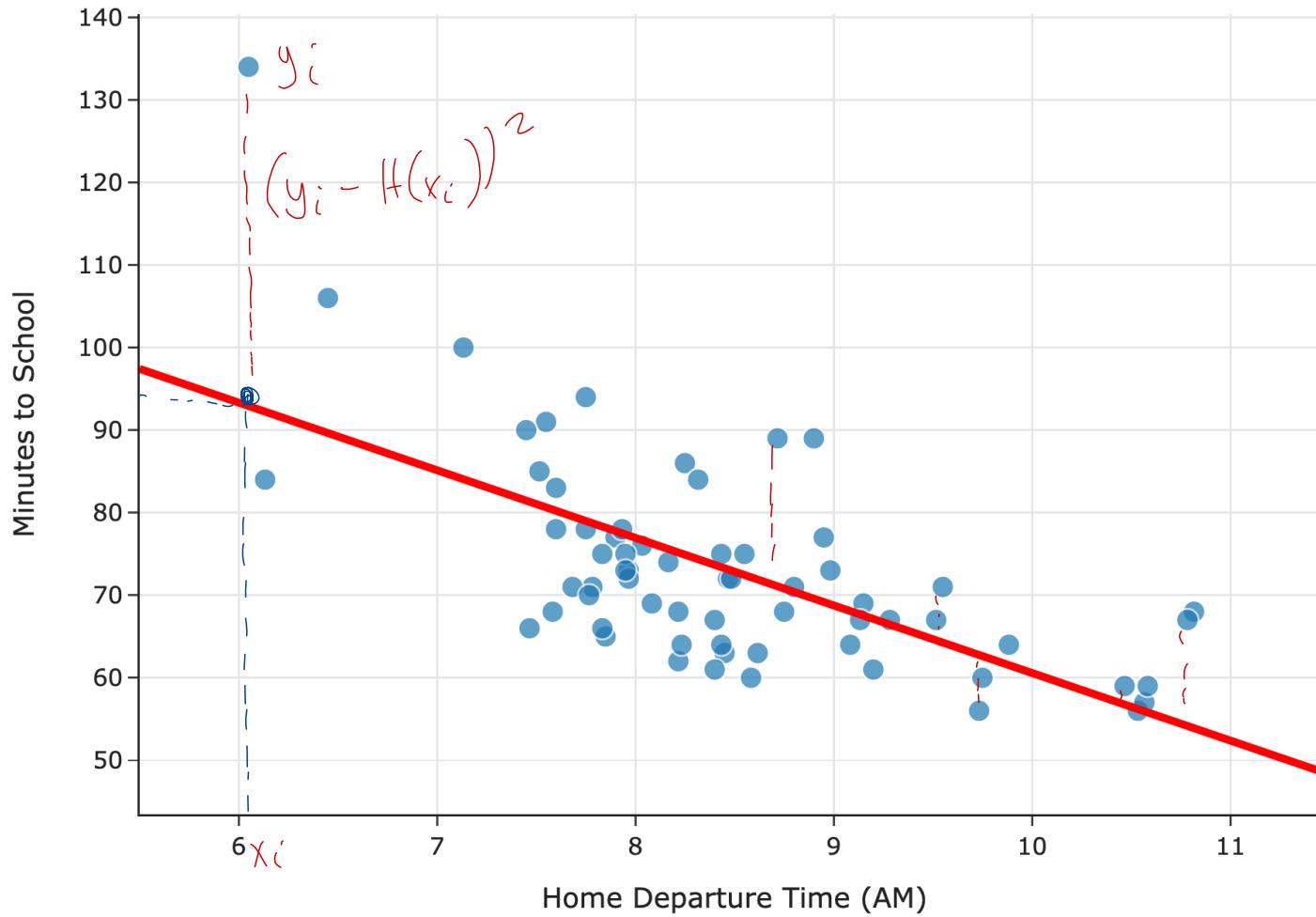
- To do so, we used calculus, and we found that the minimizing values are:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad w_0^* = \bar{y} - w_1^* \bar{x}$$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the **regression line**.

optimal intercept optimal slope

$$\text{Predicted Commute Time} = 142.25 - 8.19 * \text{Departure Hour}$$



There is no other line that has a smaller MSE

$$w_0^*, w_1^* = \arg \min_{w_0, w_1} \text{MSE}(w_0, w_1)$$

Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

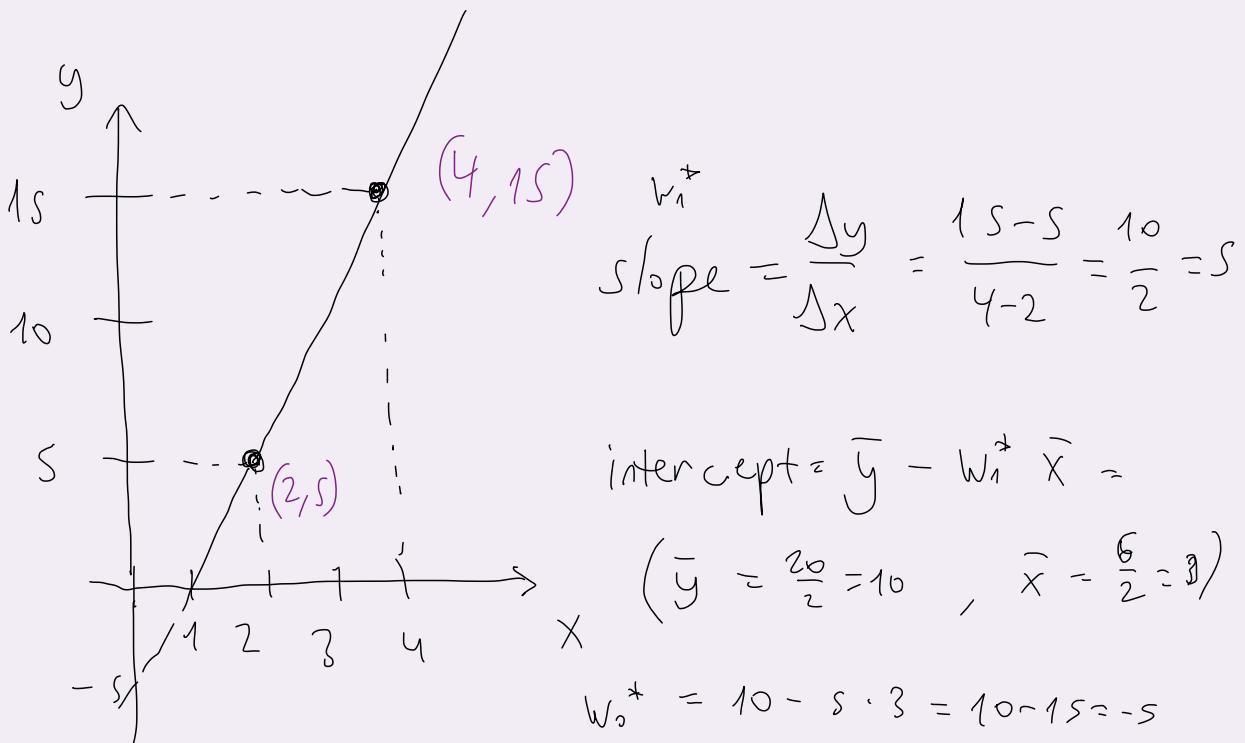
- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models.
- Learn how to build regression models with **multiple inputs**.
 - To do this, we'll need linear algebra!

Question 🤔

Answer at q.dsc40a.com

Consider a dataset with just two points, $(2, 5)$ and $(4, 15)$. Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

- A. $w_0^* = 2, w_1^* = 5$
- B. ~~$w_0^* = 3, w_1^* = 10$~~
- C. $w_0^* = -2, w_1^* = 5$
- D. ~~$w_0^* = -5, w_1^* = 5$~~



Correlation

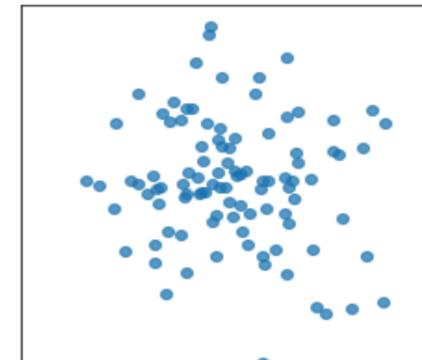
Correlation = linear association

Quantifying patterns in scatter plots

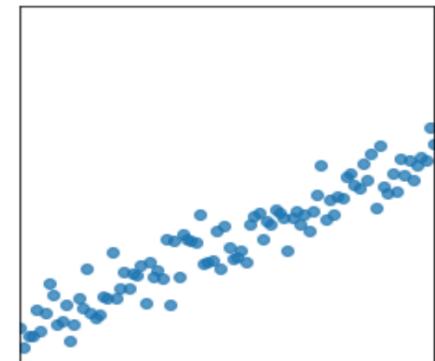
- In DSC 10, you were introduced to the idea of the **correlation coefficient**, r .
- It is a measure of the strength of the **linear association** of two variables, x and y .
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.

r positive ↗ Increase in $x \rightarrow$ increase in y
 r negative ↗ - " - → decrease in y

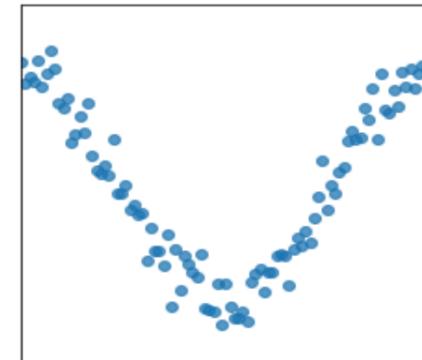
no association



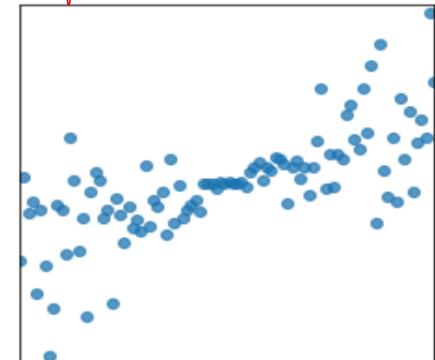
Strong positive association



non linear association



positive association



Pearson's

The correlation coefficient

- The correlation coefficient, r , is defined as the average of the product of x and y , when both are in standard units.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i in standard units is $\frac{x_i - \bar{x}}{\sigma_x}$.
- The correlation coefficient, then, is:

$$r = \frac{1}{n} \sum_{i=1}^n \left(\underbrace{\frac{x_i - \bar{x}}{\sigma_x}}_{\text{average in standard units}} \right) \left(\underbrace{\frac{y_i - \bar{y}}{\sigma_y}}_{\text{y in standard units}} \right)$$

$$\frac{x_i - \text{mean}(x)}{\text{std}(x)}$$

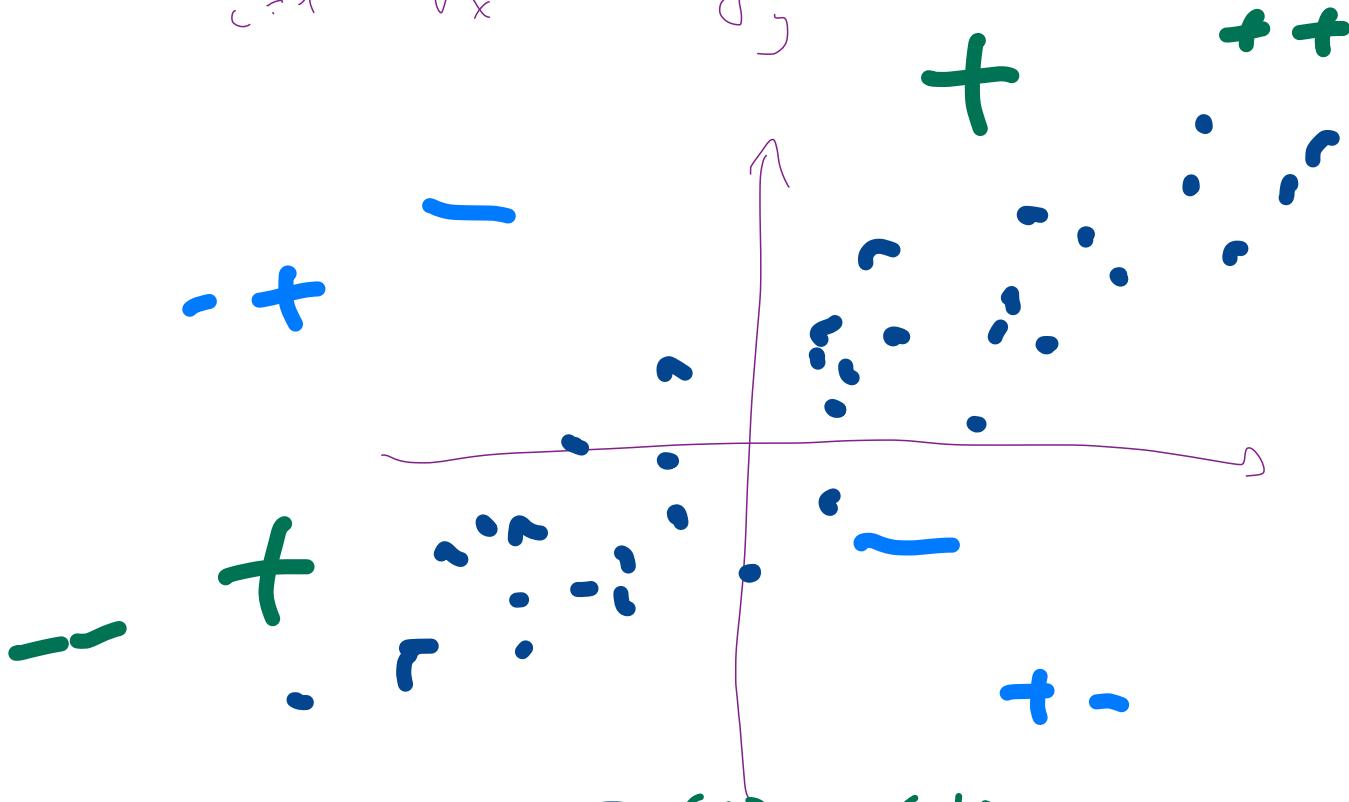
- - - - -
alternative

covariance
 $\text{Cov}_{xy} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$

$r = \frac{\text{Cov}_{xy}}{\sigma_x \sigma_y}$
plug in
 $y_i = x$
to get variance

$\sigma_x^2 = \text{Var}_x = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$
 $\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$

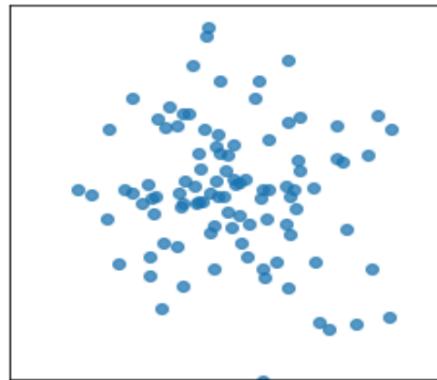
$$r = \frac{1}{n} \sum_{i=1}^n \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_x \sigma_y}$$



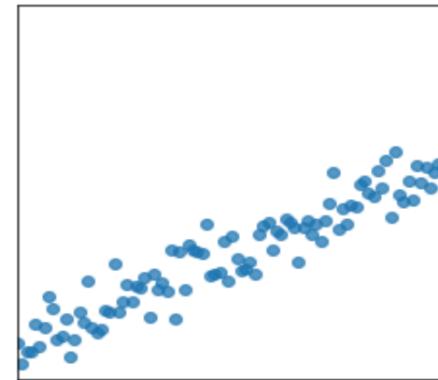
$$r = \sum (+) + (+) + (-) - (-) > 0$$

The correlation coefficient, visualized

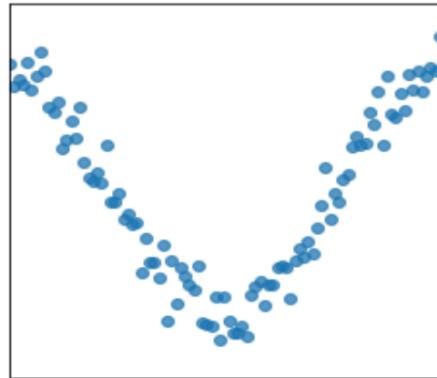
$r = -0.121$



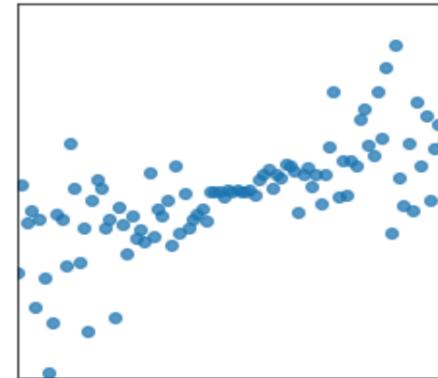
$r = 0.949$



$r = 0.052$



$r = 0.704$

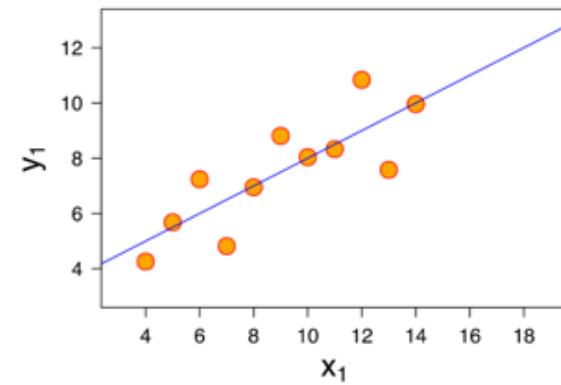
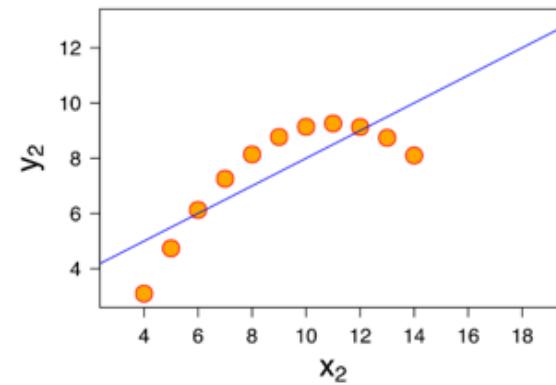
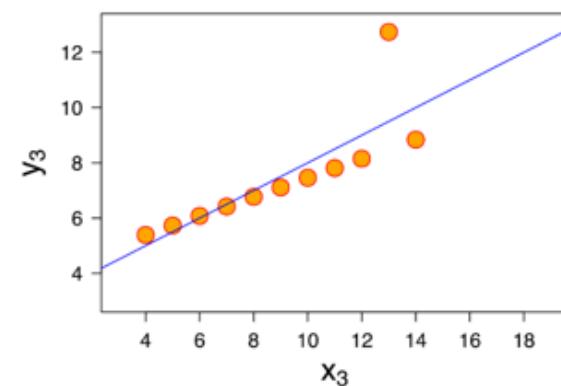
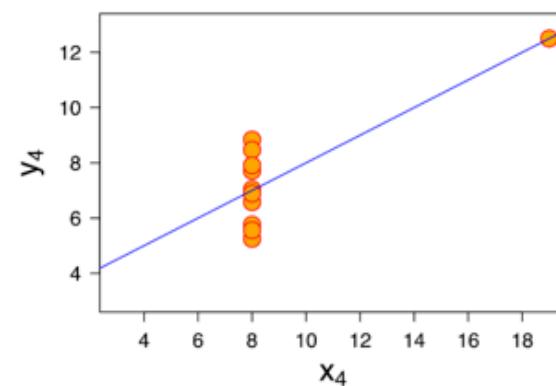


↙

Dangers of correlation

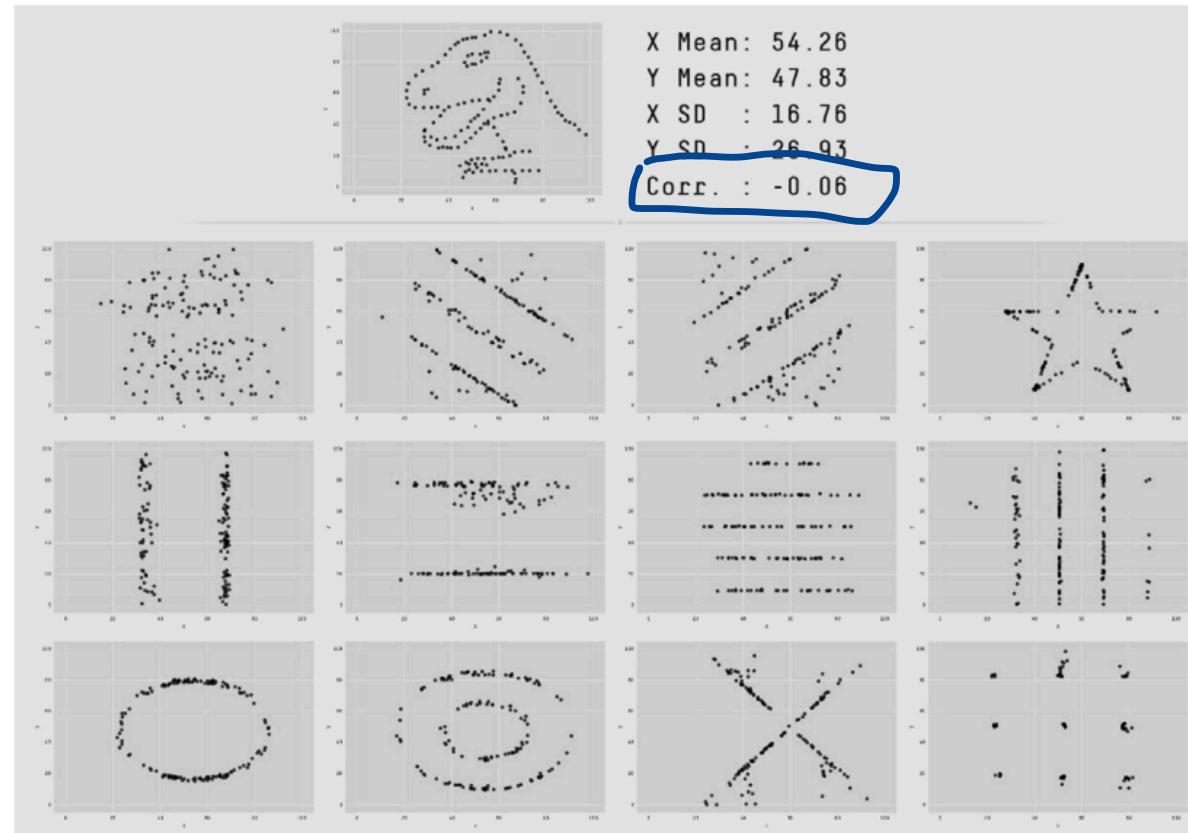
same mean, std, correlation

Anscombe's quartet
(1973)



Dangers of correlation

Datasauros dozen (2017)



Interpreting the formulas

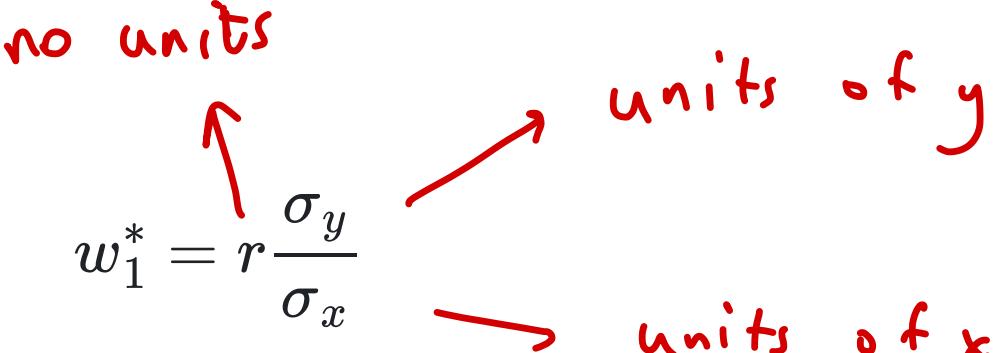
Interpreting the slope

$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$

no units

units of y

units of x

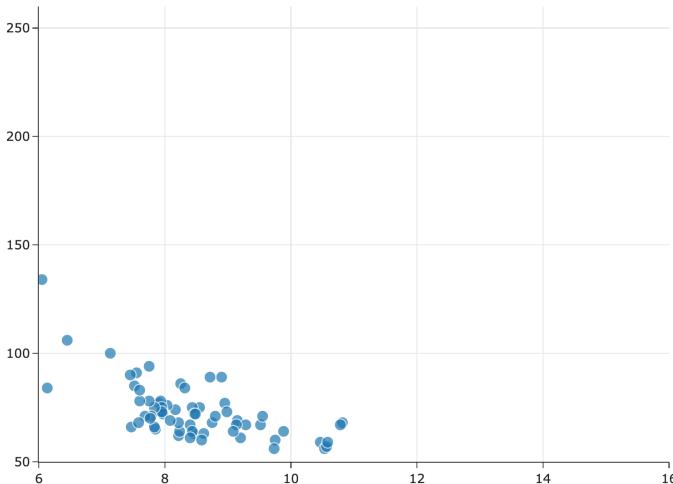
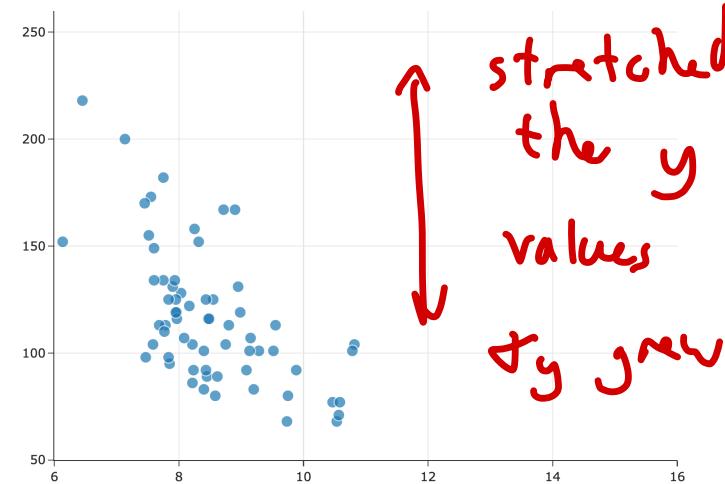
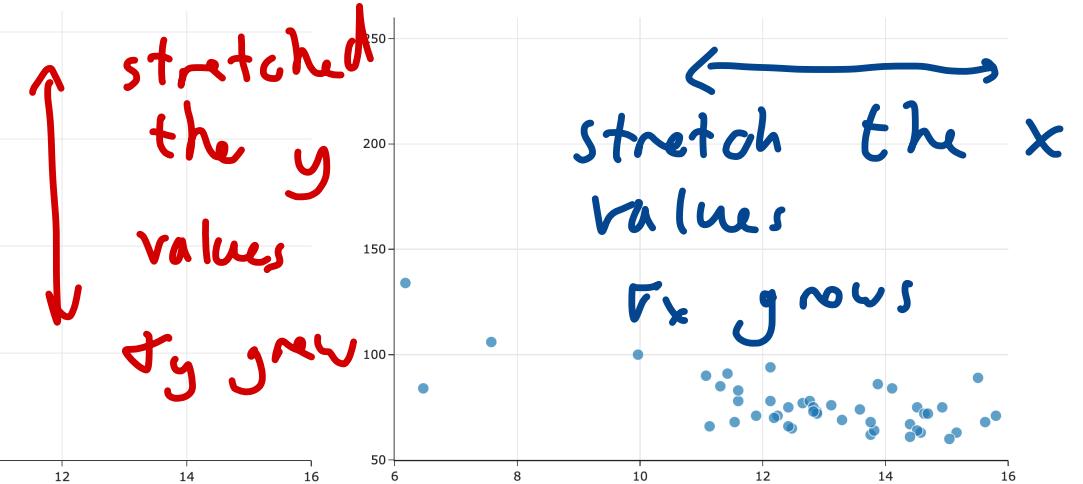


- The units of the slope are units of y per units of x .
- In our commute times example, in $H(x) = 142.25 - \underline{8.19}x$, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

r is the same in all plots

$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$



- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r 's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Question 🤔

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.