Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025



Agenda

e Simple linear regression. —— [ cot— S e

e Correlation.
e Interpreting the formulas.

e Connections to related models.
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Least squares solutions

e Our goal was to find the parameters wy and w1 * that minimized:

qu(woawl) — i i (y’b _ (wO T wlwi))Q

n

e To do so, we used calculus, and we found that the minimizing values are:

e We say w; and w] are optimal parameters, and the resulting line is called the
regression line.



Minutes to School
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Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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Now what?

We've found the optimal slope and intercept for linear hypothesis functions using
squared loss (i.e. for the regression line). Now, we'll:

e See how the formulas we just derived connect to the formulas for the slope and
intercept of the regression line we saw in DSC 10.
o They're the same, but we need to do a bit of work to prove that.

e Learn how to interpret the slope of the regression line.
e Understand connections to other related models.

e Learn how to build regression models with multiple inputs.
o To do this, we'll need linear algebral! g
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T

Question =
Answer at q.dsc40a.com

Consider a dataset with just two points, (2,5) and (4, 15). Suppose we want to fit a
linear hypothesis function to this dataset using squared loss. What are the values of wy
and w] that minimize empirical risk?

e Awy =2 w] =9

*» Blwp = 3, wi = 10

e Cwyg=—2,w]; =5

*(D-wy = =5, wi =5
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Quantifying patterns in scatter plots
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Do g cou's
The correlation coefficient

e The correlation coefficient, r, is defined as the average of the product of x and y,
when both are in standard units.

e |Let g, be the standard deviation of the x;s, and T be the mean of the x;s.

e 1, In standard units is Zi T K — maan )
SWLACx)

e The correlation coefficient, then, is:
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The correlation coefficient, visualized
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Another way to express w3

* |t turns out that w7, the optimal slope for the linear hypothesis function when
using squared loss (i.e. the regression line), can be written in terms of 7!

n
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1=1

e |t's not surprising that 7 is related to w?, since r is a measure of linear association.
1

e Concise way of writing w and wy: O

X
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v
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Proof that wi = r—~
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Dangers of correlation
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Dangers of correlation
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X Mean: 54.26
Y Mean: 47.83
X SD : 16.76
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Interpreting the slope N P anths =t J
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e The units of the slope are units of y per units of x.

e In our commute times example, in H(x) = 142.25 — 8.19z, our predicted
commute time decreases by 8.19 minutes per hour.
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Interpreting the slope
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e Since o, > 0 and o, > 0, the slope's sign is r's sign.

* As the y values get more spread out, o, increases, so the slope gets steeper.

e As the x values get more spread out, o increases, so the slope gets shallower.
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Interpreting the intercept
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e \What are the units of the intercept?
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e What is the value of H*(Z)?
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Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Minutes to School
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Question =

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add
75 minutes to all commute times in our dataset. What happens to the resulting
regression line?

e A Slope increases, intercept increases.

e B. Slope decreases, intercept increases.

e C. Slope stays the same, intercept increases.

e D. Slope stays the same, intercept stays the same.



