

Lectures 8-10

# Linear algebra: Dot products and Projections

DSC 40A, Fall 2025

## Announcements

- Homework 2 was released Friday.
- Groupwork 3 is due **tonight**.
- Check out [FAQs page](#) and the [tutor-created supplemental resources](#) on the course website.

# Agenda

- Recap: Simple linear regression and correlation.
- Connections to related models.  $\leftarrow \text{FW}^3$
- Dot products.
- Spans and projections.  $\leftarrow \text{later this week}$

## Question 🤔

Answer at [q.dsc40a.com](https://q.dsc40a.com)

**Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)**

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of [dsc40a.com](https://dsc40a.com).

## Simple linear regression

- Model:  $H(x) = w_0 + w_1 x$ .
- Loss function: squared loss, i.e.  $L_{\text{sq}}(y_i, H(x_i)) = (y_i - H(x_i))^2$ .
- Average loss, i.e. empirical risk:

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

- Optimal model parameters, found by minimizing empirical risk:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x} \quad w_0^* = \bar{y} - w_1^* \bar{x}$$

## The correlation coefficient

- The correlation coefficient,  $r$ , is defined as the average of the product of  $x$  and  $y$ , when both are in standard units.
- Let  $\sigma_x$  be the standard deviation of the  $x_i$ s, and  $\bar{x}$  be the mean of the  $x_i$ s.
- $x_i$  in standard units is  $\frac{x_i - \bar{x}}{\sigma_x}$ .
- The correlation coefficient, then, is:

$$r = \frac{1}{n} \sum_{i=1}^n \left( \frac{x_i - \bar{x}}{\sigma_x} \right) \left( \frac{y_i - \bar{y}}{\sigma_y} \right)$$

## Correlation and mean squared error

- **Claim:** Suppose that  $w_0^*$  and  $w_1^*$  are the optimal intercept and slope for the regression line. Then,

$$R_{\text{sq}}(w_0^*, w_1^*) = \sigma_y^2(1 - \underline{r^2})$$

- That is, the **mean squared error** of the regression line's predictions and the correlation coefficient,  $r$ , always satisfy the relationship above.
- Even if it's true, why do we care?
  - In machine learning, we often use both the **mean squared error** and  $r^2$  to compare the performances of different models.
  - If we can prove the above statement, we can show that **finding models that minimize mean squared error** is equivalent to **finding models that maximize  $r^2$** .

Proof that  $R_{\text{sq}}(w_0^*, w_1^*) = \sigma_y^2(1 - r^2)$

$$\begin{aligned}
 R_{\text{sq}}(w_0^*, w_1^*) &= \frac{1}{n} \sum_{i=1}^n (y_i - (w_0^* + w_1^* x_i))^2 = \frac{1}{n} \sum_{i=1}^n \left( y_i - \left( \bar{y} - w_1^* \bar{x} + w_1^* x_i \right) \right)^2 - \\
 &= \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2 - r \frac{\sigma_y}{\sigma_x} \left( x_i - \bar{x} \right)^2 \\
 &= \frac{1}{n} \sum_{i=1}^n \left[ (y_i - \bar{y})^2 + r^2 \frac{\sigma_y^2}{\sigma_x^2} (x_i - \bar{x})^2 - 2(y_i - \bar{y})(x_i - \bar{x}) \cdot r \frac{\sigma_y}{\sigma_x} \right] \\
 &= \sigma_y^2 + r^2 \frac{\sigma_x^2}{\sigma_x^2} - \cancel{\sigma_x^2} - 2 \frac{\sigma_y}{\sigma_x} \sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x}) \\
 &= (1 + r^2) \sigma_y^2 - 2r^2 \cancel{\sigma_x \sigma_y} \cdot \frac{\sigma_y}{\sigma_x} = (1 - r^2) \sigma_y^2
 \end{aligned}$$

8

$$*= r \cdot \sigma_x \sigma_y$$

$$r = \frac{1}{n} \sum_{i=1}^n \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_x \sigma_y}$$

$$\sigma_x \sigma_y r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$$

We previously showed:  $\sum_{i=1}^n (y_i - \bar{y}) = 0$  but  $\sum_{i=1}^n (y_i - \bar{y})^2 = \sigma_y^2 \leftarrow$  Why is this not 0?

Let's explicitly write the two sums:

$$\sum_{i=1}^n (y_i - \bar{y}) = (y_1 - \bar{y}) + (y_2 - \bar{y}) + \dots + (y_n - \bar{y}) \quad \text{sum of differences}$$

$$\sum_{i=1}^n (y_i - \bar{y})^2 = (y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \dots + (y_n - \bar{y})^2 \quad \text{sum of squared differences}$$

Therefore the two are different  
However note if we square the sum:

$$\left( \underbrace{\sum_{i=1}^n (y_i - \bar{y})}_{0} \right)^2 = 0^2 = 0$$

# Connections to related models

## Exercise

(no slope model)

$$W_1 = 0$$

Suppose we choose the model  $H(x) = w_0$  and squared loss.

What is the optimal model parameter,  $w_0^*$ ?

$$H(x) = W_0 = h \rightarrow \text{constant model}$$

loss - squared loss  
week 1

$$w_0^* = \text{mean } \{y_1, \dots, y_n\}$$

## Exercise

(no intercept  $w_0 = 0$ )

Suppose we choose the model  $H(x) = w_1 x$  and squared loss.

What is the optimal model parameter,  $w_1^*$ ?

Groupwork 3!

## Comparing mean squared errors

- With both:

- the constant model,  $H(x) = h$ , and
- the simple linear regression model,  $H(x) = w_0 + w_1x$ ,

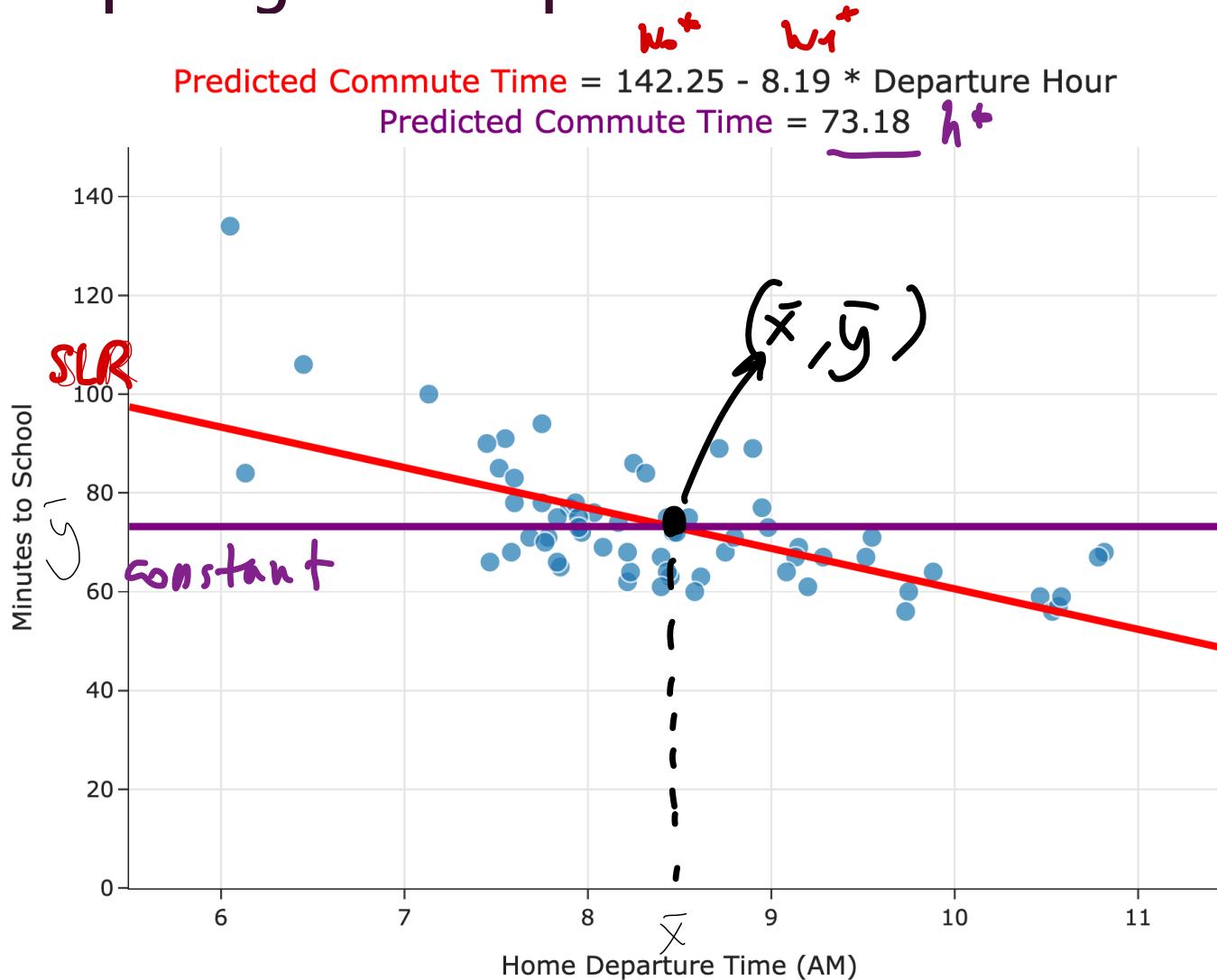
$h^*$  and  $w_0^*$  not necessarily  
the same

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

- Which model minimizes mean squared error more?

## Comparing mean squared errors

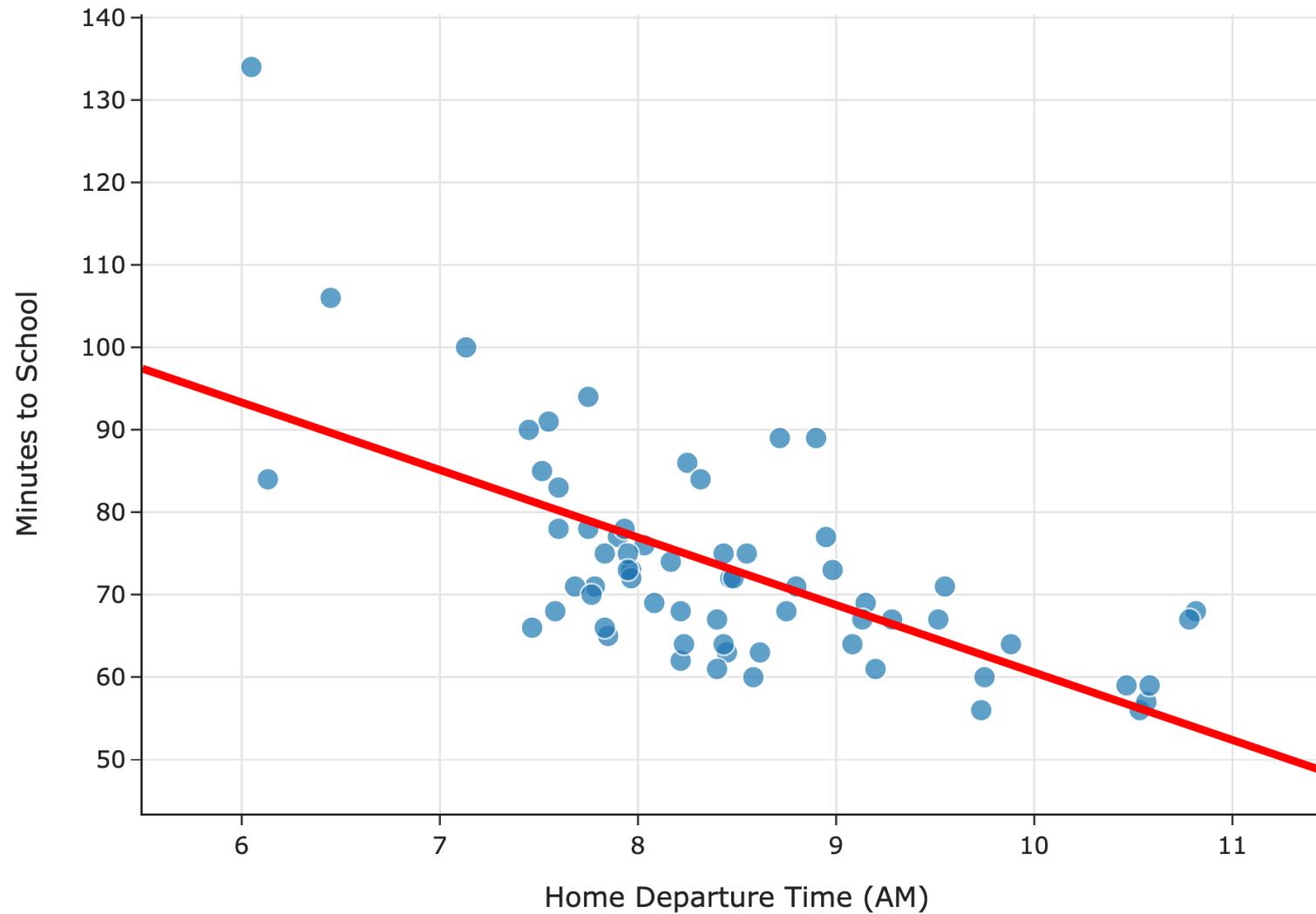


$$MSE(\text{SLR}) \leq MSE(\text{constant})$$

$$MSE = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

- The MSE of the best simple linear regression model is  $\approx 97$
- The MSE of the best constant model is  $\approx 167$
- The simple linear regression model is a more flexible version of the constant model.

Predicted Commute Time =  $142.25 - 8.19 * \text{Departure Hour}$



# Linear algebra

## Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
  - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
  - Use multiple features (input variables).
  - Are nonlinear in the features, e.g.  $H(x) = w_0 + w_1x + w_2x^2$ .

## Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
  - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
  - Use multiple features (input variables).
  - Are nonlinear in the features, e.g.  $H(x) = w_0 + w_1x + w_2x^2$ .
- Before we dive in, let's do a quick knowledge assessment.
- Go to <https://forms.gle/LXBXydpsX8rtJQPz7>

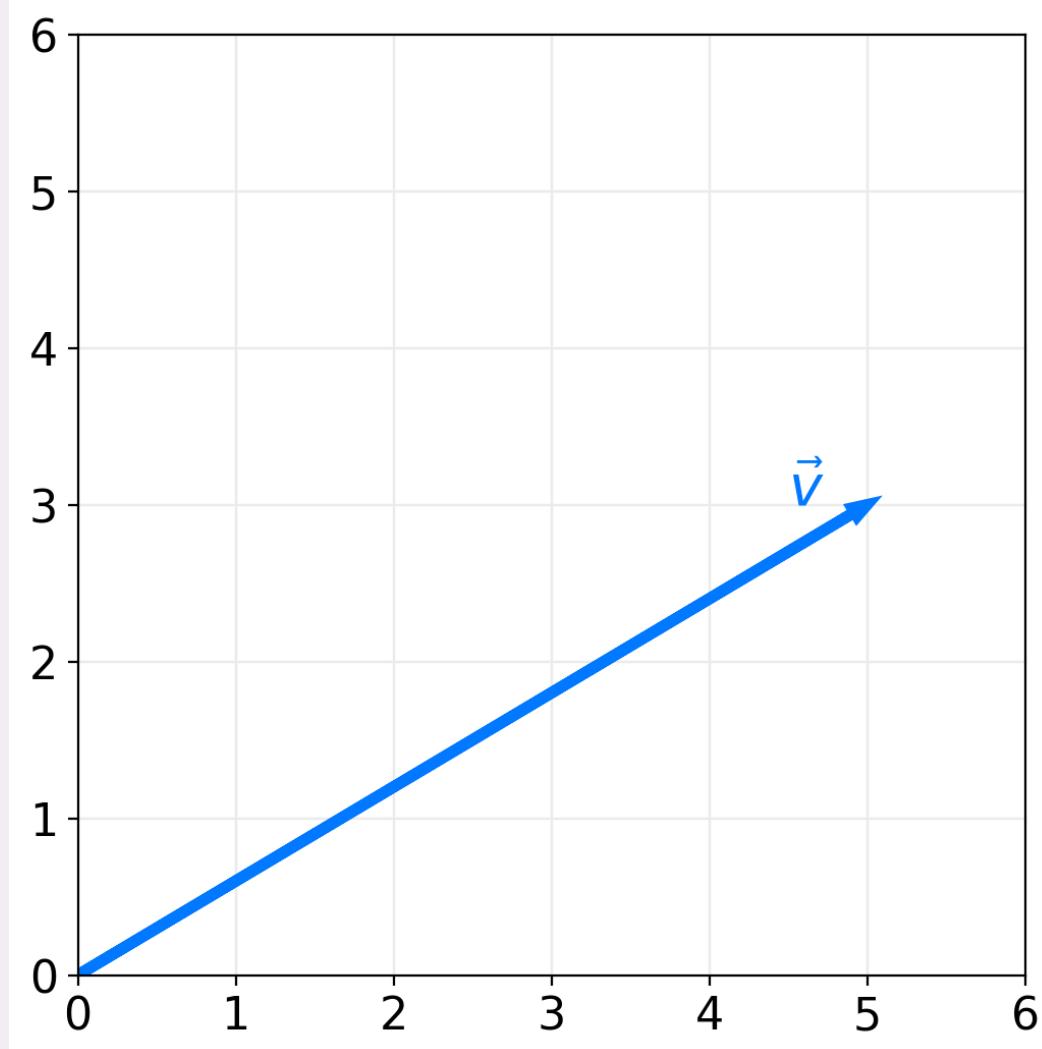


1:40

## Question 1: Norm

What is the length of  $\vec{v}$ ?

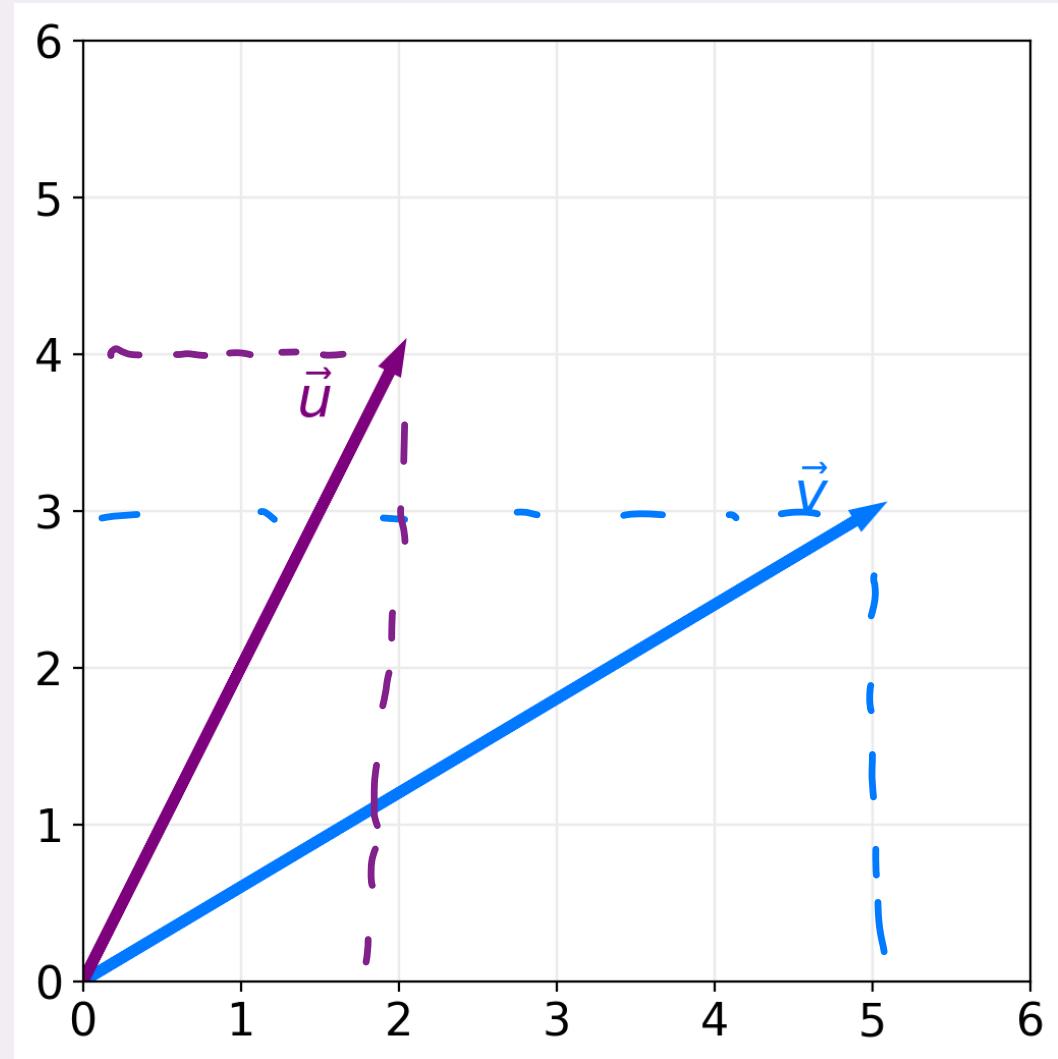
- A. 8
- B.  $\sqrt{34}$
- C.  $\sqrt{38}$
- D. 34



## Question 2: Dot product

What is  $\vec{u} \cdot \vec{v}$ ?

- A. 22
- B. 24
- C.  $\sqrt{680}$
- D.  $\begin{bmatrix} 10 \\ 12 \end{bmatrix}$



## Question 3: Norm

Which of these is another expression for the length of  $\vec{v}$ ?

- A.  $\vec{v} \cdot \vec{v} = \|\vec{v}\|^2$
- B.  $\sqrt{\vec{v}^2}$
- C.  $\sqrt{\vec{v} \cdot \vec{v}}$
- D.  $\vec{v}^2$
- E. More than one of the above.

$$\begin{aligned} & \|\vec{v}\|^2 = \|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{\sum_{i=1}^n v_i \cdot v_i} \\ & = \sqrt{\vec{v} \cdot \vec{v}} \end{aligned}$$

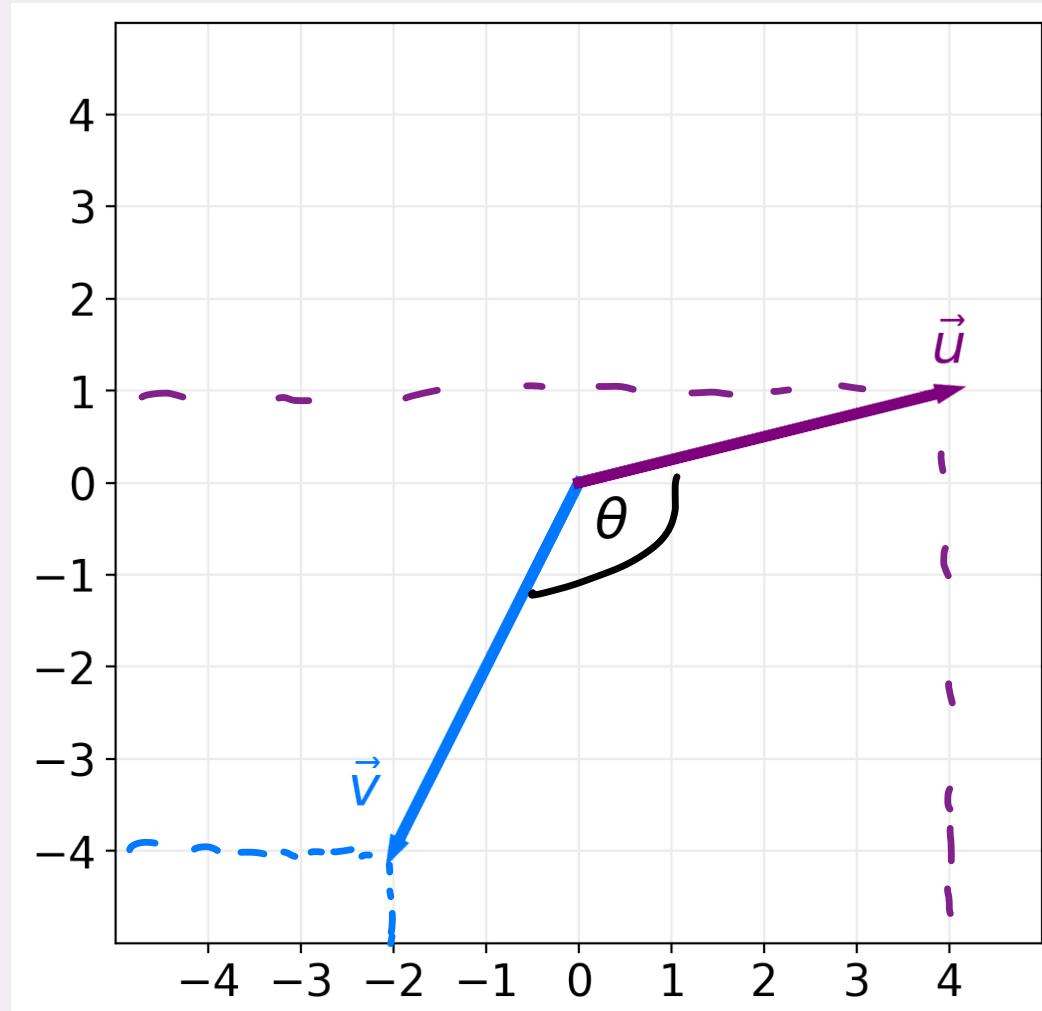
$\vec{v}^2$  is undefined  $\rightarrow$  you can square a vector

this is not equal to  $\vec{v} \cdot \vec{v}$  and it is not equal to element-wise squaring

## Question 4: $\cos \theta$

What is  $\cos \theta$ ?

- A.  $\frac{6}{\sqrt{85}}$
- B.  $\frac{-6}{\sqrt{85}}$
- C.  $\frac{-3}{85}$
- D.  $\frac{-2}{3}$



## Question 5: Orthogonality

Which of these vectors in  $\mathbb{R}^3$  orthogonal to:

$$\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix} ?$$

- A.  $\begin{bmatrix} -2 \\ -5 \\ 8 \end{bmatrix}$
- B.  $\begin{bmatrix} 5 \\ -8 \\ 2 \end{bmatrix}$
- C.  $\begin{bmatrix} 8 \\ 0 \\ 2 \end{bmatrix}$
- D. All of the above

## Warning !

- We're **not** going to cover every single detail from your linear algebra course.
- There will be facts that you're expected to remember that we won't explicitly say.
  - For example, if  $A$  and  $B$  are two matrices, then  $AB \neq BA$ .
  - This is the kind of fact that we will only mention explicitly if it's directly relevant to what we're studying.
  - But you still need to know it, and it may come up in homework questions.
- We **will** review the topics that you really need to know well.

(video or course website      3blue1brown)

# Dot Products

# Vectors

- A vector in  $\mathbb{R}^n$  is an ordered collection of  $n$  numbers.
- We use lower-case letters with an arrow on top to represent vectors, and we usually write vectors as **columns**.

$$\vec{v} = \begin{bmatrix} 8 \\ 3 \\ -2 \\ 5 \end{bmatrix}$$

*In general*  
 $\vec{v} \in \mathbb{R}^n$   
 $n \times 1$

- Another way of writing the above vector is  $\vec{v} = [8, 3, -2, 5]^T$ .
- Since  $\vec{v}$  has four **components**, we say  $\vec{v} \in \mathbb{R}^4$ .

$4 \times 1$

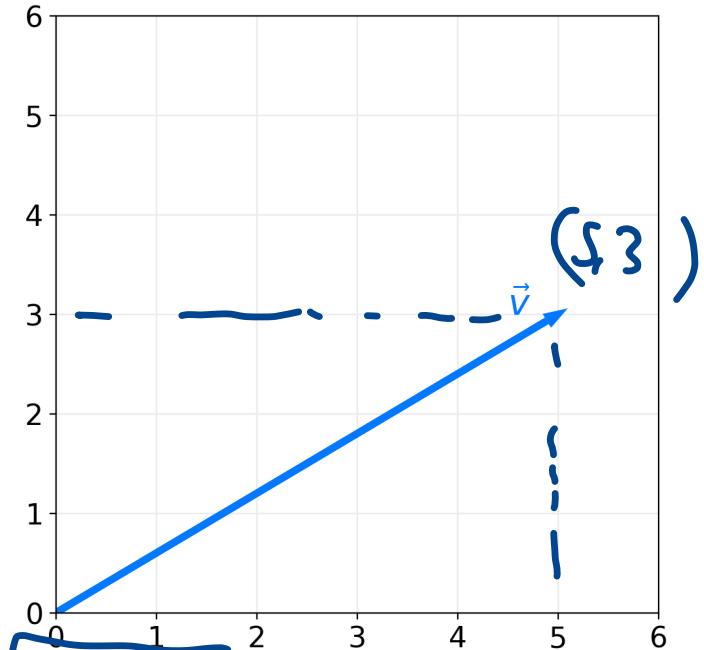
# The geometric interpretation of a vector

- A vector  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is an arrow to the point  $(v_1, v_2, \dots, v_n)$  from the origin.
- The **length**, or  $L_2$  **norm**, of  $\vec{v}$  is:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{\vec{v}^T \vec{v}}$$

- A vector is sometimes described as an object with a **magnitude/length** and **direction**.

$$\|\vec{v}\| = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34}$$



## Dot product: coordinate definition

- The dot product of two vectors  $\vec{u}$  and  $\vec{v}$  in  $\mathbb{R}^n$  is written as:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \langle \vec{u}, \vec{v} \rangle$$

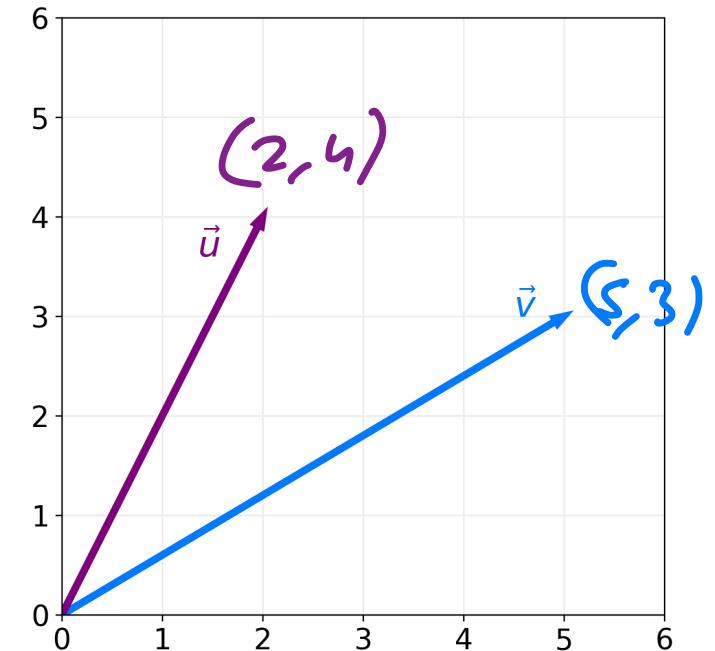
- The computational definition of the dot product:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

- The result is a scalar, i.e. a single number.

$$\vec{u} \cdot \vec{v} = 5 \cdot 2 + 3 \cdot 4 = 10 + 12 = 22 \in \mathbb{R}$$

$$\vec{u}^T \vec{v} = [5 \ 3] \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 10 + 12 = 22 \in \mathbb{R}$$



$$f(\vec{u}, \vec{v}) \in \mathbb{R}$$

$$\begin{matrix} \uparrow & \uparrow \\ \mathbb{R}^n & \mathbb{R}^n \end{matrix}$$