Lectures 8-10

Linear algebra: Dot products and
Projections

DSC 40A, Fall 2025



Announcements
e Homework 2 was released Friday.
e Groupwork 3 is due tonight.

o Check out FAQs page and the tutor-created supplemental resources on the course

website.


https://dsc40a.com/faqs
https://dsc40a.com/resources/#tutor-created-supplemental-resources

Agenda
e Recap: Simple linear regression and correlation.
e Connections to related models. <— GLJZ
e Dot products.
e Spans and projections. <— [alo~ ¢ g Lk



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.



Simple linear regression

e Model: H(z) = wy + wy.
e Loss function: squared loss, i.e. Lsq(ys, H(z;)) = (y; — H(z;))?.

e Average loss, i.e. empirical risk:

n

1
Rgq(wo, w1) = o (yi — (wo + ’wlwi))z
i=1

e Optimal model parameters, found by minimizing empirical risk:

n

Z(ffii —z)(yi — 9)
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The correlation coefficient

e The correlation coefficient, r, is defined as the average of the product of x and y,
when both are in standard units.

e |Let g, be the standard deviation of the x;s, and T be the mean of the x;s.

Tr;—I

e x; in standard units is

€T

e The correlation coefficient, then, is:

1 i — T i — Y
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Correlation and mean squared error

e Claim: Suppose that w, and w7 are the optimal intercept and slope for the
regression line. Then, /

qu(wga wy) = 0-73(]; — 7“2)

e That is, the mean squared error of the regression line's predictions and the
correlation coefficient, 7, always satisfy the relationship above.

e Even if it's true, why do we care?

o In machine learning, we often use both the mean squared error and 72 to
compare the performances of different models.

o |f we can prove the above statement, we can show that finding models that

minimize mean squared error is equivalent to finding models that maximize

r2.
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Exercise (e Sfoﬁﬂ WM) W, = O

Suppose we choose the model H(x) = wg and squared loss.
What is the optimal model parameter, w;?

H&): \Wo ’h\ — Coastant Aredal
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Exercise (V\@ e copt W = D>

Suppose we choose the model H(x) = wix and squared loss.
What is the optimal model parameter, w3?

Gmb (\NQV“A 3&

12



Comparing mean squared errors

e With both: lﬂk an d \»Jf Mot N&Sf@“(@

o the constant model, H(a:) — h, and the S ame

o the simple linear regression model, H(z) = wy + wiz,

when we chose squared loss, we minimized mean squared error to find optimal
parameters:

Ru(H) = 23" (s — H(zy))?

n

e Which model minimizes mean squared error more?
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NSE(sLR) € M5E(coastand

Comparing mean squared errors

VR V¥ | o
Predicted Commute Time = 142.25 - 8.19 * Departure Hour )
Predicted Commute Time = 73.18 h" MSE = — E (yZ — H(CBZ))

D n

1=1

120 e The MSE of the best
) simple linear regression
_ model is &~ 97

e The MSE of the best
constant model is ~ 167

Minutes to School

e The simple linear
regression model is a
more flexible version of

the constant model.

Home Departure Time (AM)
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Minutes to School

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

140 -
130-
120
110

100 o

Home Departure Time (AM)
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Wait... why do we need linear algebra?
e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to
find hypothesis functions that:
o Use multiple features (input variables).

o Are nonlinear in the features, e.g. H(z) = wy + w1z + wax?.
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Wait... why do we need linear algebra?
e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to
find hypothesis functions that:

o Use multiple features (input variables).
o Are nonlinear in the features, e.g. H(z) = wy + w1z + wax?.
e Before we dive in, let's do a quick knowledge assessment.

e Go to https://forms.gle/LXBXydpsX8rtJQPz7
1:4YD
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Question 1: Norm
What is the length of v?
e A.8
e B.1/34
e C./38

e D. .34
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Question 2: Dot product
What is u - v?

o A 22

e B.24

e C.v680

i
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Question 3: Norm

Which of these is another expression for the length of v?
e AT = IV ] "
. B.V3? =V} = Z Vi o o= Z":Vc
e C.VT 9 =1 X

e D. V2 -
- -
e E. More than one of the above. - N,

—9
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Question 4: cos 6

What is cos 6?

o A _6_

V85
° =6
B.M
e C. 22
-D._T2
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Question 5: Orthogonality

Which of these vectors in R® orthogonal to:

STl
|

e D. All of the above
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Warning !
e We're not going to cover every single detail from your linear algebra course.

e There will be facts that you're expected to remember that we won't explicitly say.
o For example, if A and B are two matrices, then AB # BA.

o This is the kind of fact that we will only mention explicitly if it's directly
relevant to what we're studying.

o But you still need to know it, and it may come up in homework questions.

e We will review the topics that you really need to know well.

( Vi Aw ow Qourse M‘) st u)hu { !:rovu')
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Vectors

e A vectorin R" is an ordered collection of n numbers.

/

e We use lower-case letters with an arrow on top to represent vectors, and we

usually write vectors as columns.

STl
|

In J.eﬂz_,r«(
v ER”
nxA

Gramsfor
e Another way of writing the above vector is v = [8, 3, —2, 5@4 r

e Since v has four components, we say v € R*.
U
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The geometric interpretation of a vector

o
U2
e Avectorv = IS an arrow to the point
| Un
(v1,va,...,v,) from the origin.

e The length, or Ly norm, of v is:

[5ll = /93 + o+ 403 -—YZ‘/ (77 .=

e A vector is sometimes described as an obJect with a

2_
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magnitude/length and direction. 17 - \l\st_% 3—? - x'LS‘—fﬁ‘
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Dot product: coordinate definition

e The dot product of two vectors u and v in R" is

written as:
— — —T = ~n
U-v=1u'v —:.<U\,\77
e The computational definition of the dot product:

n
u-v= E U;V; = U1V1] + UV2T. .. TURVUp
i=1

e The result is a scalar, i.e. a single number.

C{"V = S L+ 2:4=qo0+12 =21 ER
GV =(s ;3[ 3 19 4 12 <22 €R
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