

Lectures 8-10

Linear algebra: Dot products and Projections

DSC 40A, Fall 2025

Question 🤔

Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Dot product: coordinate definition

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is written as:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \langle \vec{u}, \vec{v} \rangle$$

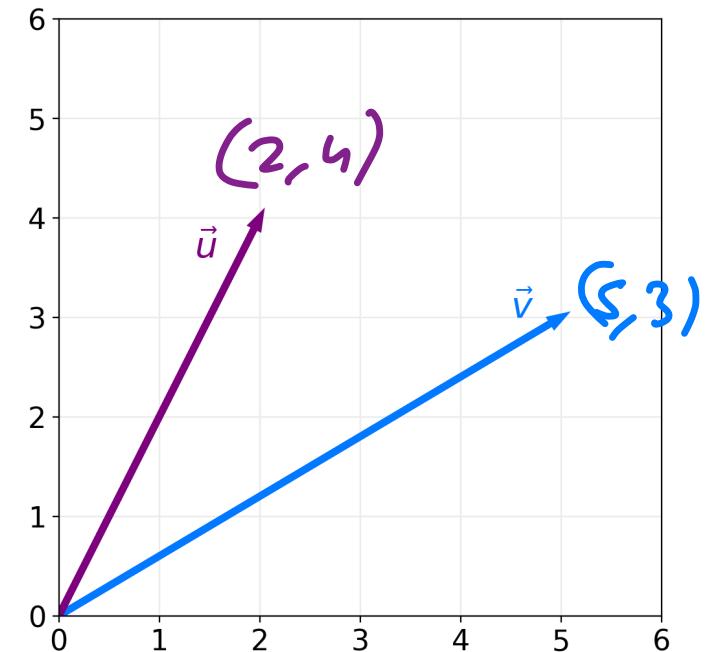
- The computational definition of the dot product:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

- The result is a scalar, i.e. a single number.

$$\vec{u} \cdot \vec{v} = 5 \cdot 2 + 3 \cdot 4 = 10 + 12 = 22 \in \mathbb{R}$$

$$\vec{u}^T \vec{v} = [5 \ 3] \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 10 + 12 = 22 \in \mathbb{R}$$



$$f(\vec{u}, \vec{v}) \in \mathbb{R}$$
$$\begin{matrix} \uparrow & \uparrow \\ \mathbb{R}^n & \mathbb{R}^n \end{matrix}$$

Dot product: geometric definition

- The computational definition of the dot product:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

- The geometric definition of the dot product:

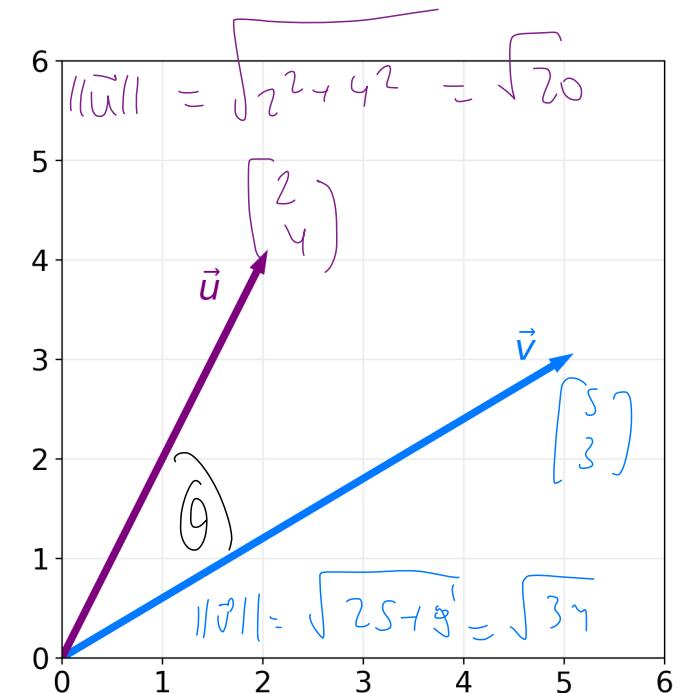
$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

- The two definitions are equivalent! This equivalence allows us to find the angle θ between two vectors.

$$\vec{u} \cdot \vec{v} = 22 \quad (\text{from previous slides})$$

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{22}{\sqrt{24} \cdot \sqrt{20}} = \frac{11}{\sqrt{24} \cdot \sqrt{5}} = \frac{11}{\sqrt{120}}$$



Orthogonal vectors

- Recall: $\cos 90^\circ = 0$.
- Since $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$, if the angle between two vectors is 90° , their dot product is $\|\vec{u}\| \|\vec{v}\| \cos 90^\circ = 0$.
- If the angle between two vectors is 90° , we say they are perpendicular, or more generally, **orthogonal**.
- Key idea:

$$\vec{u} \cdot \vec{v} = 0$$

two vectors are **orthogonal** $\iff \vec{u} \cdot \vec{v} = 0$

$$\|\vec{u}\|, \|\vec{v}\| \neq 0$$

if and only if

Exercise

Find a non-zero vector in \mathbb{R}^3 orthogonal to:

$$\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\vec{u} \cdot \vec{v} = 2u_1 + 5u_2 - 8u_3 = 0$$

Infinite possibilities!

$$w = \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix}$$

$$\vec{v} \cdot \vec{w} = 2 \cdot 5 - 2 \cdot 5 = 0$$

$$z = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}$$

$$\vec{v} \cdot \vec{z} = (0 \cdot 2 + 2 \cdot 5 + 5 \cdot 8) = 0$$

Spans and projections

Adding and scaling vectors

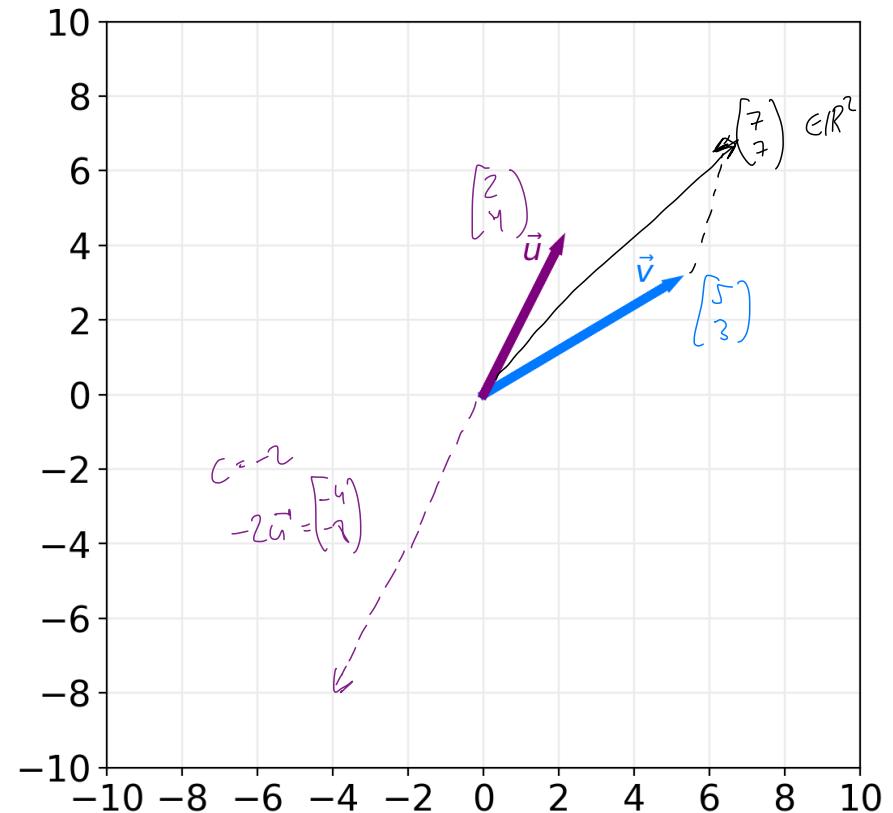
- The sum of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the **element-wise sum** of their components:

$$\vec{u}, \vec{v} \in \mathbb{R}^n \quad \vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix} \in \mathbb{R}^n$$

- If c is a scalar, then:

$$c \in \mathbb{R}$$

$$c\vec{v} = \begin{bmatrix} cv_1 \\ cv_2 \\ \vdots \\ cv_n \end{bmatrix}$$



Linear combinations

Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$ all be vectors in \mathbb{R}^n .

A **linear combination** of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$ is any vector of the form:

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_d\vec{v}_d \in \mathbb{R}^n$$

where a_1, a_2, \dots, a_d are all scalars.

$$= \sum_{i=1}^d a_i \vec{v}_i$$

$a_i \in \mathbb{R} \text{ for all } 1 \leq i \leq d$

$$\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^2$$

$$\vec{v}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\vec{v}_2 = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

$$\vec{v}_3 = \begin{pmatrix} 0 \\ 9 \end{pmatrix}$$

$$a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 \in \mathbb{R}^2$$
$$= \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Span

- Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$ all be vectors in \mathbb{R}^n .
- The **span** of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$ is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

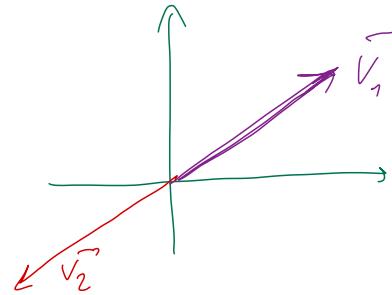
$$\text{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d) = \{a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_d\vec{v}_d : a_1, a_2, \dots, a_n \in \mathbb{R}\}$$

Example

$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Span is now all of \mathbb{R}^2
(2D plane)

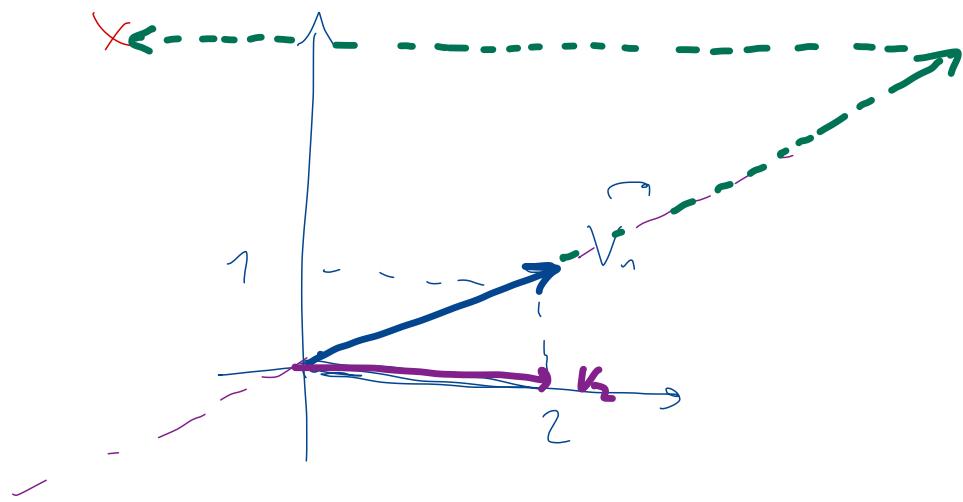


$$\text{span} \{\vec{v}_1\} = c\vec{v}_1$$

for any $c \in \mathbb{R}$

$$\vec{v}_2 = -\vec{v}_1$$

$$\text{span} \{\vec{v}_1, \vec{v}_2\} = c\vec{v}_1$$



Exercise

Let $\vec{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and let $\vec{v}_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$. Is $\vec{y} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$ in $\text{span}(\vec{v}_1, \vec{v}_2)$?

If so, write \vec{y} as a linear combination of \vec{v}_1 and \vec{v}_2 .

$$\vec{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

$$-2 \cdot \vec{v}_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

$\vec{v}_1 \neq \vec{v}_2$ *not parallel*

$\text{span}(\vec{v}_1, \vec{v}_2) = \mathbb{R}^2$ any vector in \mathbb{R}^2 can be written as lin. comb. of \vec{v}_1, \vec{v}_2

$$w_1 \vec{v}_1 + w_2 \vec{v}_2 = \vec{y}$$

$$\begin{bmatrix} 2w_1 \\ -3w_1 \end{bmatrix} + \begin{bmatrix} -w_2 \\ 4w_2 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \end{bmatrix} \Rightarrow$$

$$\begin{aligned} 2w_1 - w_2 &= 9 \\ -3w_1 + 4w_2 &= 1 \end{aligned}$$

solve for w_1, w_2

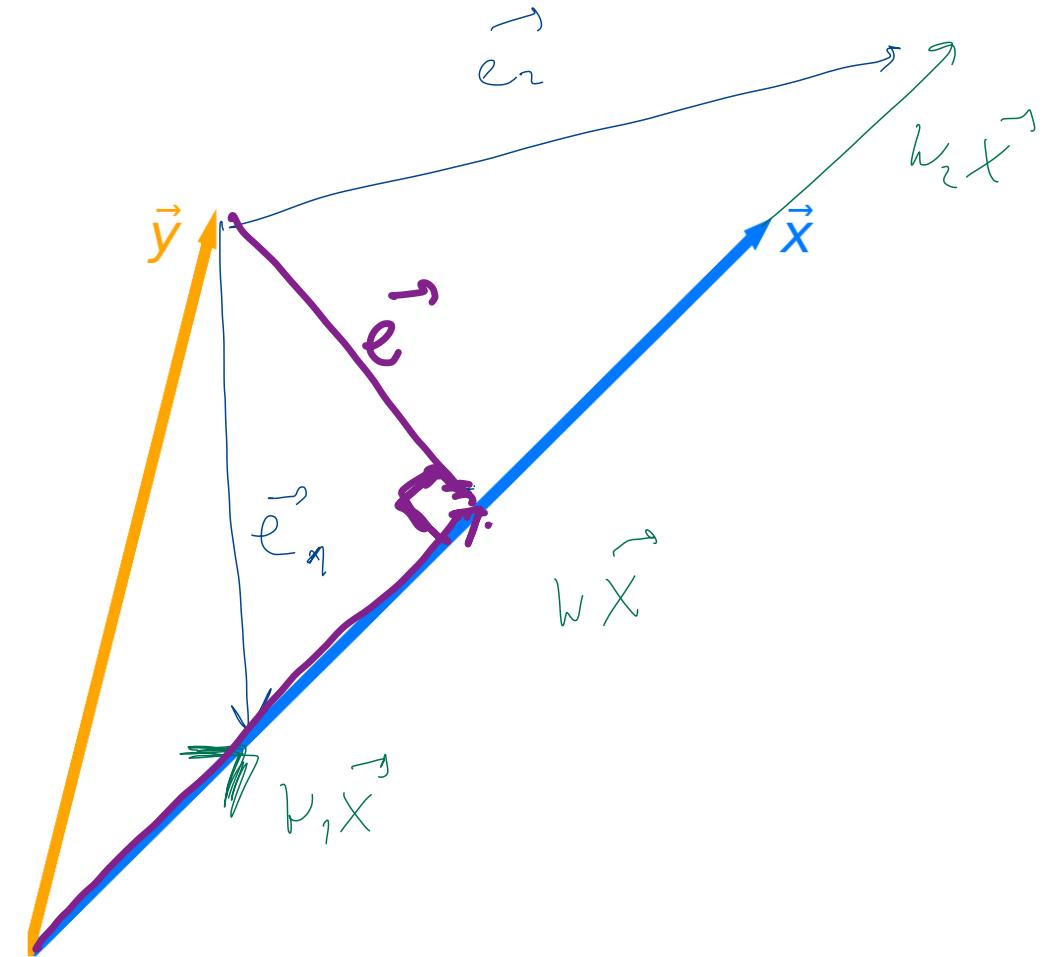
Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n .
- The span of \vec{x} is the set of all vectors of the form:

$$w\vec{x}$$

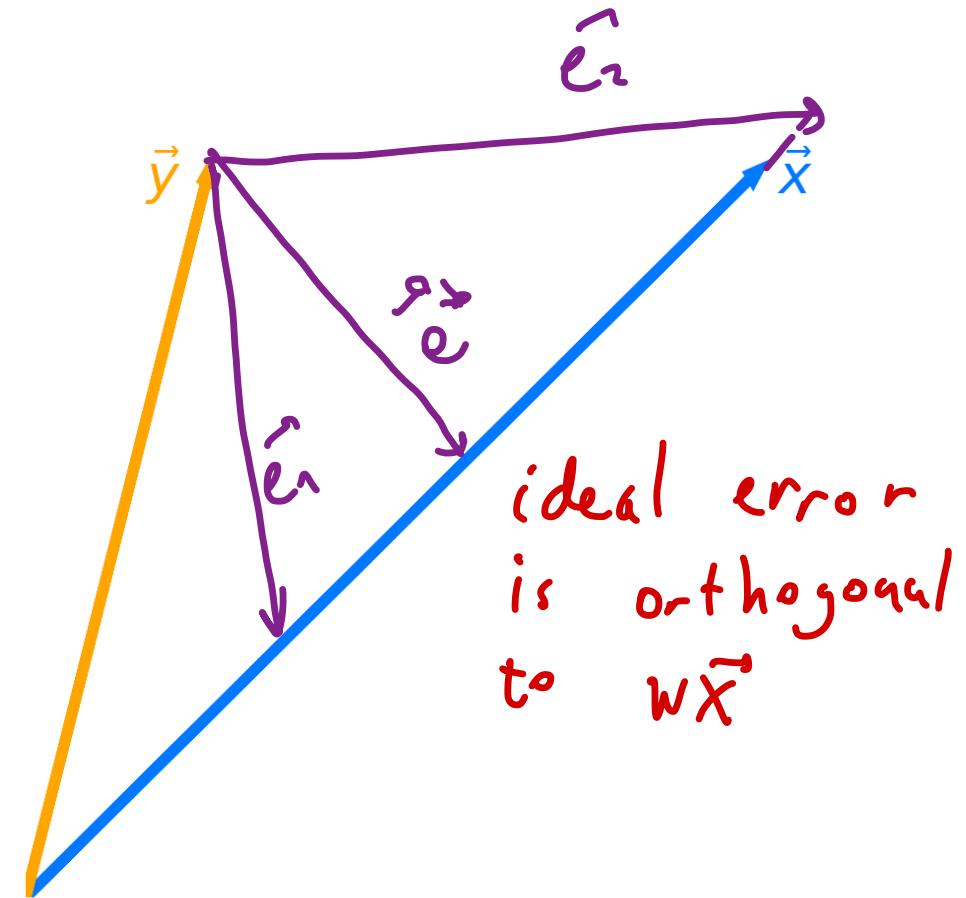
where $w \in \mathbb{R}$ is a scalar.

- **Question:** What vector in $\text{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\text{span}(\vec{x})$ that is closest to \vec{y} is the orthogonal projection of \vec{y} onto $\text{span}(\vec{x})$.



Projection error

- Let $\vec{e} = \vec{y} - w\vec{x}$ be the **projection error**: that is, the vector that connects \vec{y} to $\text{span}(\vec{x})$.
- **Goal:** Find the w that makes \vec{e} as short as possible.
 - That is, minimize:
$$\min \|\vec{e}\|$$
 - Equivalently, minimize:
$$\|\vec{y} - w\vec{x}\|$$
- **Idea:** To make \vec{e} as short as possible, it should be **orthogonal** to $w\vec{x}$.



Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} - w\vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|$, \vec{e} must be orthogonal to $w\vec{x}$.
- Given this fact, how can we solve for w ?

$$\min \|\vec{e}\| \Rightarrow \min \|\vec{y} - w\vec{x}\|$$

$$\vec{e} \perp w\vec{x} \Rightarrow \vec{e} \cdot w\vec{x} = 0$$

$$(\vec{y} - w\vec{x}) \cdot w\vec{x} = 0 \quad / \text{divide by } w$$

$$\vec{x} \cdot (\vec{y} - w\vec{x}) = 0$$

$$\vec{x} \cdot \vec{y} - \vec{x} \cdot (w\vec{x}) =$$

$$\vec{x} \cdot \vec{y} - w(\vec{x} \cdot \vec{x}) = 0$$

$$w \|\vec{x}\|^2 = \vec{x} \cdot \vec{y}$$
$$w = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2}$$

optimal proj
so that \vec{e}
is orthogonal
to \vec{x}

Exercise

Let $\vec{a} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -1 \\ 9 \end{bmatrix}$.

What is the orthogonal projection of \vec{a} onto $\text{span}(\vec{b})$?

Your answer should be of the form $w^* \vec{b}$, where w^* is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- **Question:** What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - Vectors in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ are of the form $w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}$, where $w_1, w_2 \in \mathbb{R}$ are scalars.
- Before trying to answer, let's watch [this animation that Jack, one of our tutors, made.](#)

