

Lectures 8-10

Linear algebra: Dot products and Projections

DSC 40A, Fall 2025

Question 🤔

Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Agenda

- Recap: Simple linear regression and correlation.
- Connections to related models. ← HW3
- Dot products.
- Spans and projections.
- Normal equations

+ HW2 due tonight
+ HW3 released tonight
+ HW1 grades will be released tonight (hopefully :))

Friday off moved to HDSI 336!

Orthogonal projection

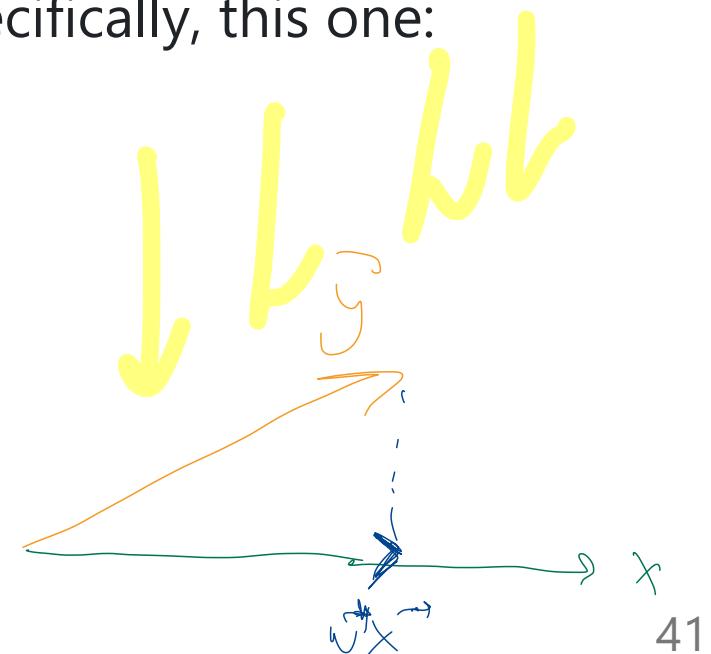
- **Question:** What vector in $\text{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer:** It is the vector $w^* \vec{x}$, where:

$$w^* = \frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}} \approx \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2}$$

- Note that w^* is the solution to a minimization problem, specifically, this one:

$$\text{error}(w) = \|\vec{e}\| = \|\vec{y} - w\vec{x}\|$$

- We call $w^* \vec{x}$ the **orthogonal projection** of \vec{y} onto $\text{span}(\vec{x})$.
 - Think of $w^* \vec{x}$ as the "shadow" of \vec{y} .



Exercise

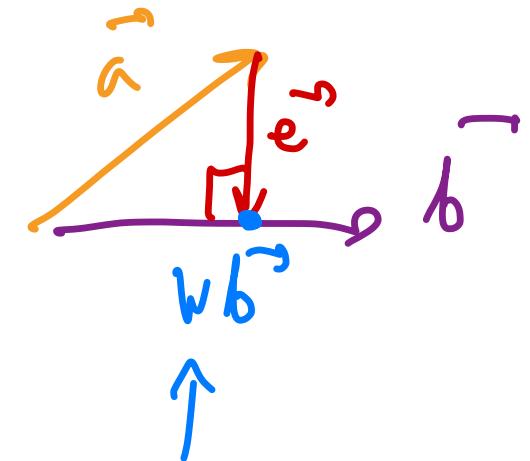
Let $\vec{a} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -1 \\ 9 \end{bmatrix}$.

What is the orthogonal projection of \vec{a} onto $\text{span}(\vec{b})$?

Your answer should be of the form $w^* \vec{b}$, where w^* is a scalar.

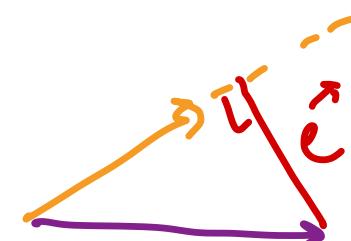
Projecting \vec{a} onto $\text{span}(\vec{b})$

$$w^* = \frac{\vec{b} \cdot \vec{a}}{\vec{b} \cdot \vec{b}} = \frac{-1 \cdot 5 + 9 \cdot 2}{(-1)^2 + 9^2} = \frac{-5 + 18}{1 + 81} = \frac{13}{82}$$



Projecting \vec{b} onto $\text{span}(\vec{a})$

$$w^* = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} = \frac{5 \cdot (-1) + 2 \cdot 9}{5^2 + 2^2} = \frac{13}{29}$$

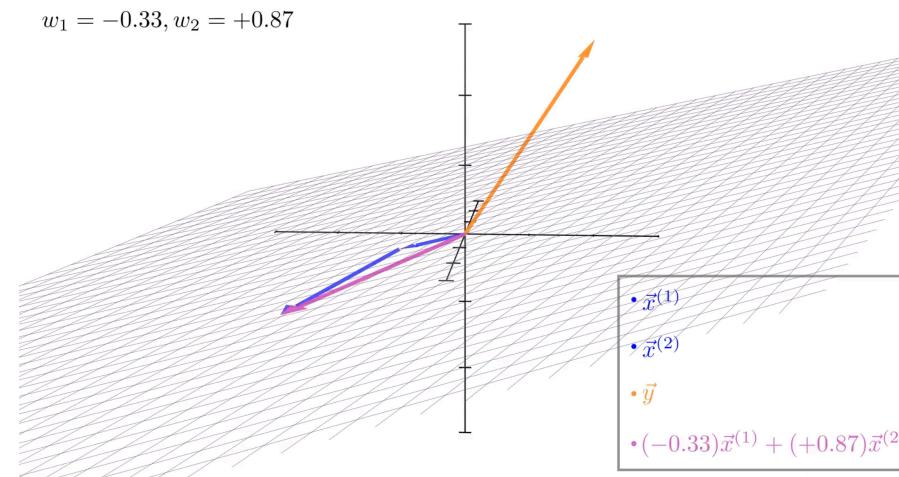


Moving to multiple dimensions

feature index superscript

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question:** What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - Vectors in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ are of the form $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$, where $w_1, w_2 \in \mathbb{R}$ are scalars.
- Before trying to answer, let's watch [this animation that Jack, one of our tutors, made.](#)

previous



Minimizing projection error in multiple dimensions

- Question: What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?

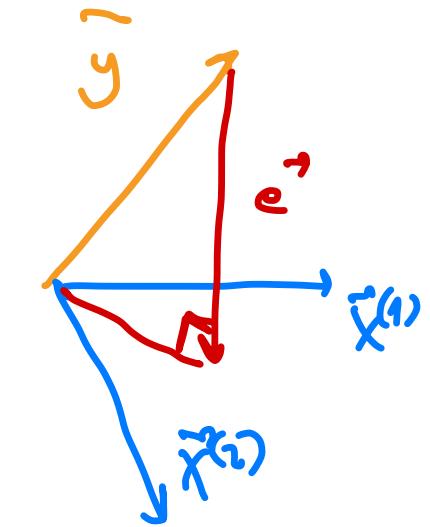
- That is, what vector minimizes $\|\vec{e}\|$, where:

$$\vec{e} = \vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}$$

- Answer: It's the vector such that $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$ is **orthogonal** to \vec{e} .
- Issue: Solving for w_1 and w_2 in the following equation is difficult:

$$\left(w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)} \right) \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right)}_{\vec{e}} = 0$$

Vector in the span $\{\vec{x}^{(1)}, \vec{x}^{(2)}\}$
is a linear comb. of $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$



Minimizing projection error in multiple dimensions

- It's hard for us to solve for w_1 and w_2 in:

$$\left(w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)} \right) \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right)}_{\vec{e}} = 0$$

- Observation:** All we really need is for $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ to individually be orthogonal to \vec{e} .

- That is, it's sufficient for \vec{e} to be orthogonal to the spanning vectors themselves.
- If $\vec{x}^{(1)} \cdot \vec{e} = 0$ and $\vec{x}^{(2)} \cdot \vec{e} = 0$, then:

$$\begin{aligned} (w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}) \cdot \vec{e} &= (w_1 \vec{x}^{(1)}) \cdot \vec{e} + (w_2 \vec{x}^{(2)}) \cdot \vec{e} \\ &= w_1 (\vec{x}^{(1)} \cdot \vec{e}) + w_2 (\vec{x}^{(2)} \cdot \vec{e}) = 0 \end{aligned}$$

Minimizing projection error in multiple dimensions

- Question: What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Answer: It's the vector such that $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$ is orthogonal to $\vec{e} = \vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}$.
- Equivalently, it's the vector such that $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are both orthogonal to \vec{e} :

$$\begin{aligned}\vec{x}^{(1)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) &= 0 \\ \vec{x}^{(2)} \cdot \left(\underbrace{\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}}_{\vec{e}} \right) &= 0\end{aligned}$$

Solving these
2 equations
will yield
 w_1^* , w_2^*

- This is a system of two equations, two unknowns (w_1 and w_2), but it still looks difficult to solve.

Now what?

- We're looking for the scalars w_1 and w_2 that satisfy the following equations:

$$\vec{x}^{(1)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$
$$\vec{x}^{(2)} \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right)}_{\vec{e}} = 0$$

- In this example, we just have two spanning vectors, $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.
- If we had any more, this system of equations would get extremely messy, extremely quickly.
- Idea: Rewrite the above system of equations as a **single equation, involving matrix-vector products**.

Matrices

Matrices

- An $n \times d$ matrix is a table of numbers with n rows and d columns.
- We use upper-case letters to denote matrices.

$$A = \begin{bmatrix} 2 & 5 & 8 \\ -1 & 5 & -3 \end{bmatrix}$$

- Since A has two rows and three columns, we say $A \in \mathbb{R}^{2 \times 3}$.
- **Key idea:** Think of a matrix as **several column vectors, stacked next to each other**.

$$A = \begin{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} & \begin{bmatrix} 5 \\ 5 \end{bmatrix} & \begin{bmatrix} 8 \\ -3 \end{bmatrix} \end{bmatrix}$$

Matrix addition and scalar multiplication

- We can add two matrices only if they have the same dimensions.
- Addition occurs elementwise:

$$\begin{bmatrix} 2 & 5 & 8 \\ -1 & 5 & -3 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 7 & 11 \\ -1 & 6 & -1 \end{bmatrix}$$

$$C[i,j] = A[i,j] + B[i,j]$$

- Scalar multiplication occurs elementwise, too:

$$2 \begin{bmatrix} 2 & 5 & 8 \\ -1 & 5 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 10 & 16 \\ -2 & 10 & -6 \end{bmatrix}$$

$$D[i,j] = cA[i,j]$$

$$\downarrow$$

$$c \in \mathbb{R}$$

Matrix-matrix multiplication

- Key idea: We can multiply matrices A and B if and only if:

$$A\beta$$

$$\# \text{ columns in } A = \# \text{ rows in } B$$

- If A is $n \times d$ and B is $d \times p$, then AB is $n \times p$.
- Example: If A is as defined below, what is $A^T A$?

$$A = \begin{bmatrix} 2 & 5 & 8 \\ -1 & 5 & -3 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

$$A^T = \begin{bmatrix} 2 & -1 \\ 5 & 5 \\ 8 & -3 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

$$A^T A = \begin{bmatrix} 2 \cdot 2 + (-1) \cdot (1) & \dots \\ 5 & \dots \\ 8 & \dots \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

Question

Answer at q.dsc40a.com

Assume A , B , and C are all matrices. Select the **incorrect** statement below.

- A. $A(B + C) = AB + AC$.
- B. $A(BC) = (AB)C$.
- C. $AB = BA$.
- D. $(A + B)^T = A^T + B^T$.
- E. $(AB)^T = B^T A^T$.

example

$$A \cdot B = C$$

$B \cdot A \rightarrow$ product undefined!

$$\begin{array}{c} 7 \times 3 \\ \uparrow \quad \uparrow \\ 5 \times 7 \end{array}$$

Matrix-vector multiplication

- A vector $\vec{v} \in \mathbb{R}^n$ is a matrix with n rows and 1 column.

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

- Suppose $A \in \mathbb{R}^{n \times d}$.

- What must the dimensions of \vec{v} be in order for the product $A\vec{v}$ to be valid?

$$\begin{matrix} A \\ \text{---} \\ n \times d \end{matrix} \quad \begin{matrix} \vec{v} \\ \text{---} \\ d \times 1 \end{matrix}$$

$\vec{v} \in \mathbb{R}^d$, column vec with d elements

- What must the dimensions of \vec{v} be in order for the product $\vec{v}^T A$ to be valid?

$$\begin{bmatrix} \text{---} \\ \vec{v} \\ \text{---} \end{bmatrix} \quad \begin{bmatrix} \text{---} \\ A \\ \text{---} \end{bmatrix}$$

$$\begin{matrix} \vec{v}^T \cdot A \\ \text{---} \\ 1 \times n \end{matrix} \quad \begin{matrix} \text{---} \\ A \\ \text{---} \end{matrix}$$

$\vec{v} \in \mathbb{R}^n$, \vec{v}^T row vec with n elements

One view of matrix-vector multiplication

row perspective

- One way of thinking about the product $A\vec{v}$ is that it is the dot product of \vec{v} with every row of A .
- Example: What is $A\vec{v}$?

$$A = \begin{bmatrix} 2 & 5 & 8 \\ -1 & 5 & -3 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 2 \\ -1 \\ -5 \end{bmatrix}$$

$$A \vec{v} = \begin{bmatrix} [A]_1 \cdot \vec{v} \\ [A]_2 \cdot \vec{v} \end{bmatrix} = \begin{bmatrix} 2 \cdot 2 + 5 \cdot (-1) + 8 \cdot (-5) \\ -1 \cdot 2 + 5 \cdot (-1) + (-3) \cdot (-5) \end{bmatrix} = \begin{pmatrix} -41 \\ 8 \end{pmatrix}$$

$\in \mathbb{R}^2$

Another view of matrix-vector multiplication

- Another way of thinking about the product $A\vec{v}$ is that it is a **linear combination** of the columns of A , using the weights in \vec{v} .
- Example: What is $A\vec{v}$?

$$A = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{bmatrix} 8 \\ -3 \end{bmatrix}$$
$$\vec{v} = \begin{bmatrix} 2 \\ -1 \\ -5 \end{bmatrix}$$

$$A\vec{v} = 2 \underbrace{\begin{bmatrix} 2 \\ -1 \end{bmatrix}}_{\text{linear combination of the cols of } A} - 1 \underbrace{\begin{bmatrix} 5 \\ 5 \end{bmatrix}}_{\text{of } A} - 5 \underbrace{\begin{bmatrix} 8 \\ -3 \end{bmatrix}}_{\text{of } A} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} + \begin{bmatrix} -5 \\ -5 \end{bmatrix} + \begin{bmatrix} -40 \\ 15 \end{bmatrix} = \begin{bmatrix} 41 \\ 8 \end{bmatrix}$$

linear combination of the cols
of A

Matrix-vector products create linear combinations of columns!

- Key idea: It'll be very useful to think of the matrix-vector product $A\vec{v}$ as a linear combination of the columns of A , using the weights in \vec{v} .

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1d} \\ a_{21} & a_{22} & \dots & a_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nd} \end{bmatrix} \quad \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$$

↓

$$A\vec{v} = v_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} + v_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} + \dots + v_d \begin{bmatrix} a_{1d} \\ a_{2d} \\ \vdots \\ a_{nd} \end{bmatrix}$$

Spans and projections, revisited

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- **Question:** What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - That is, what values of w_1 and w_2 minimize $\|\vec{e}\| = \|\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}\|$?

Find w_1^+ , w_2^+ such that

$$\left\{ \begin{array}{l} \vec{x}^{(1)} \cdot \vec{e} = 0 \\ \vec{x}^{(2)} \cdot \vec{e} = 0 \end{array} \right.$$

Matrix-vector products create linear combinations of columns!

$$\vec{x}^{(1)} = \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix} \quad \vec{x}^{(2)} = \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix} \quad w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$$

- Combining $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ into a single matrix gives:

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} \underline{2} & \underline{-1} \\ \underline{5} & \underline{0} \\ \underline{3} & \underline{4} \end{bmatrix} \quad X\vec{w} = w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$$
$$\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

- Then, if $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, linear combinations of $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ can be written as $X\vec{w}$.
- The **span of the columns of X** , or $\text{span}(X)$, consists of all vectors that can be written in the form $X\vec{w}$.

Minimizing projection error in multiple dimensions

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

- **Goal:** Find the vector $\vec{w} = [w_1 \quad w_2]^T$ such that $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$ is minimized.
- As we've seen, \vec{w} must be such that:

2 equations
with 2
variables
 w_1, w_2

$$\left\{ \begin{array}{l} \vec{x}^{(1)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0 \\ \vec{x}^{(2)} \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right)}_{\vec{e}} = 0 \end{array} \right.$$

known unknown

- How can we use our knowledge of matrices to rewrite this system of equations as a single equation?

Simplifying the system of equations, using matrices

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

$$\vec{x}^{(1)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$

$$\vec{x}^{(2)} \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right)}_{\vec{e}} = 0$$

$$w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)} = \vec{X} \vec{w}$$

$$\vec{x}^{(1)} (\vec{y} - \vec{X} \vec{w}) = 0$$

$$\vec{e} = \vec{y} - \vec{X} \vec{w}$$

$$\vec{x}^{(2)} (\vec{y} - \vec{X} \vec{w}) = 0$$

plug in

Simplifying the system of equations, using matrices

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

1. $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$ can be written as $X \vec{w}$, so $\vec{e} = \vec{y} - X \vec{w}$.
2. The condition that \vec{e} must be orthogonal to each column of X is equivalent to condition that $X^T \vec{e} = 0$.

$$\vec{y} - X \vec{w}$$

$$\left\{ \begin{array}{l} \vec{x}^{(1)} \cdot (\vec{y} - \vec{X}\vec{w}) = 0 \\ \vec{x}^{(2)} \cdot (\vec{y} - \vec{X}\vec{w}) = 0 \end{array} \right.$$

↓ \vec{e}
 combine into
 a single matvec
 eq.

$$X = \begin{bmatrix} 2 \\ 5 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ \vec{x}^{(1)} \\ \vec{x}^{(2)} \\ 1 \end{bmatrix}$$

$$X^T = \begin{bmatrix} -x^{(1)} \\ -x^{(2)} \end{bmatrix}$$

$$X^T \vec{e} = X^T (\vec{y} - \vec{X}\vec{w}) = 0$$

$$X^T \cdot \vec{e} = \begin{bmatrix} -\vec{x}^{(1)} \\ -\vec{x}^{(2)} \end{bmatrix} \vec{e} = \begin{matrix} \uparrow \\ \text{row perspective} \end{matrix}$$

$$\left(\begin{array}{l} \vec{x}^{(1)} \cdot \vec{e} \\ \vec{x}^{(2)} \cdot \vec{e} \end{array} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}$$

The normal equations

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

- **Goal:** Find the vector $\vec{w} = [w_1 \quad w_2]^T$ such that $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^* such that:

$$\begin{aligned} X^T \vec{e} &= 0 \\ X^T (\vec{y} - X\vec{w}^*) &= 0 && \text{if invertible} \\ X^T \vec{y} - X^T X \vec{w}^* &= 0 \\ \implies X^T X \vec{w}^* &= X^T \vec{y} \end{aligned}$$
$$\vec{w}^* = \underbrace{(X^T X)^{-1}}_{\text{if invertible}} X^T \vec{y}$$

- The last statement is referred to as the **normal equations**.

The general solution to the normal equations

$$X \in \mathbb{R}^{n \times d} \quad \vec{y} \in \mathbb{R}^n$$

- **Goal, in general:** Find the vector $\vec{w} \in \mathbb{R}^d$ such that $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^* such that:

$$\begin{aligned} X^T \vec{e} &= 0 \\ \implies X^T X \vec{w}^* &= X^T \vec{y} \end{aligned}$$

- Assuming $X^T X$ is invertible, this is the vector:

$$\boxed{\vec{w}^* = (X^T X)^{-1} X^T \vec{y}}$$

- This is a big assumption, because it requires $X^T X$ to be **full rank**.
- If $X^T X$ is not full rank, then there are infinitely many solutions to the normal equations, $X^T X \vec{w}^* = X^T \vec{y}$.

What does it mean?

- **Original question:** What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- **Final answer:** It is the vector $\mathbf{X}\vec{w}^*$, where:

$$\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$$

- Revisiting our example:

$$\mathbf{X} = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

- Using a computer gives us $\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y} \approx \begin{bmatrix} 0.7289 \\ 1.6300 \end{bmatrix}$.
- So, the vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ closest to \vec{y} is $0.7289\vec{x}^{(1)} + 1.6300\vec{x}^{(2)}$.

An optimization problem, solved

- We just used linear algebra to solve an **optimization problem**.
- Specifically, the function we minimized is:

$$\text{error}(\vec{w}) = \|\vec{y} - \mathbf{X}\vec{w}\|$$

- This is a function whose input is a vector, \vec{w} , and whose output is a scalar!
- The input, \vec{w}^* , to **error**(\vec{w}) that minimizes it is:

$$\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$$

- We're going to use this frequently!