Lecture 11

Regression and Linear Algebra

DSC 40A, Fall 2025



Announcements

e Homework 3 is due on Friday, October 24th.

e Homework 1 scores are available on Gradescope.
o Regrade requests are due tonight.

e The Midterm Exam is on Monday, Nov 3rd in class.
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Agenda

e Regression and linear algebra.
e Finding the optimal parameter vector
o by minimizing the projection error (linear algebra).

o by minimizing empirical risk (multivariate calculus).



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.
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Wait... why do we need linear algebra?
e We want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to

find hypothesis functions that:
o Use multiple features (input variables), e.q., H(z) = wg + w1z + wox(?),
o Are non-linear in the features, e.g., H(z) = wg + w1z + waz?.

e |et's see if we can put what we learned last week to use.



Simple linear regression, revisited

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

]
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e To find wy and wi, we minimized
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empirical risk, i.e. average loss:
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Ry (H) = — Z (yi — H(z;))”
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* Observation: R (wo, w1) kind of looks

; ; ; ; like the formula for the norm of a vector,

Home Departure Time (AM) .
9] = A/vE+v5+ ...+ vl

Minutes to School




Regression and linear algebra
Let's define a few new terms: /

e The observation vector is the vector . This is the vector of observed values.

e The hypothesis vector is the vector b € R™ with components H (z;). This is the

vector of predicted values. n rows J“f‘f et
e The error vector is the vector € € R™ with components:
€; — — H(ZBZ)
&5
This is the vector of signed errors. —_Jh
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Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed values.

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector € € R™ with components: e; = 1, — H(x;)

e Key idea: We can rewrite the mean squared error of H as:

n n

Reo(H) = — 3" (v~ H@)* = — et = [ = — i - bl
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The hypothesis vector

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H(x) = wy + wix, the hypothesis vector can

be written: Lwey, row
_’w() 4 ’wlxl- - 1 ‘<o| j (\Jo (.-1 X()[Ub“ _
?L Wo + W1T2 1 X 0 yA W,
: | : U wiknsin Ne * W, K,
Wo + W1 Ty 1 "
WworrnEal (mm.)
X lin comb: y
\ 1
deaiyp AatmX w.[g) + Wy i}
: Yo
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Rewriting the mean squared error

o Define the design matrix X € R™*? as:

L1
1 L9

X =
1 x,]

. — 2 — wO
e Define the parameter vector w € R“ to be w = [

—

e Then, h = Xw, so the mean squared error becomes:

'wl'

1 - . 1
Ry (H) = —||y — hH2 — |Ryq(w) = —
n n
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Minimizing mean squared error, again

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized:
1 <« 5
qu(’lU(), wl) — E Z( — (’UJ() + wlxz))
1=1
e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w( and wj by finding the w* = [wy w*]" that minimizes:

S 1 S
Rea(®) = — |1 - Xa|

* Do we already know the w* that minimizes Ry, ()?
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An optimization problem we've seen before

e The optimal parameter vector, @W* = [wf w?]", is the one that minimizes:

N B 1
Ryq(@0) = — || — Xw||* = —||é||*
n n

e The minimizer of ||€|| is the same as the minimizer of Ryy(w)!

w* = arg mjn qu — arg mjn “g“

w w

e Last week we found that the vector in the span of the columns of X that is closest

to 1 is the vector Xw such that ||e|| = ||y — Xw|| is minimized.
-5
R - ey
— \((‘

13



The modeling recipe

1. Choose a model.

3. Minimize average loss to find optimal model parameters.

1 1, .
w* = argmin Ry (w) = arg min {—H — Xﬂ}HZ} — arg min {—HeH2}
— — n 1) n

w w w



An optimization problem we've seen before

e Key idea: Find w € R? such that the error vector, € = 1 — X, is orthogonal to
the columnsof X. — Jafjne ¢the span

o Why? Because this will make the error vector as short as possible.

(smallest MSE)
L T 2=y =X

ve {'ﬁ»—g_ 0 < ze/0 Ve cfun
ST~
e Why? Because X '€ contains the dot products of each column in X with €. If these

are all 0, then € is orthogonal to every column of X!

e The w* that accomplishes this satisfies:

‘-.—- ~ \ \ ‘7 — -_ i’T_- - -ITé,- (ov-‘h:]oﬂ.ﬁ( k
Ty 1 % Ae= €= span 1, x
1 % |1 X — - zle P A
: L - - b
u‘ x“ - -
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The normal equations

e Key idea: Find w € R? such that the error vector, € = 1 — X, is orthogonal to
the columns of X.

e The w* that accomplishes this satisfies: ¢ Assuming X X is invertible, this is the

xTe=0 vector:
X7y - Xu") =0 W = (XTx) T xT
_ P SLR o This is a big assumption, because
e The normal equations: o ) it requires XT X to be full rank

— X' xw*=Xx" Witk o If X1 X is not full rank, then there

J // are infinitely many solutions to the
dosi

N normal equations.
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An optimization problem, solved
e We just used linear algebra to solve an optimization problem. N\v CA{CI“ (“-5 l
e Specifically, the function we minimized is:
error(w) = ||y — Xw||

e The input, w*, to error(w) that minimizes it is one that satisfies the normal
equations:

X' Xu* = x*
If X7 X is invertible, then the unique solution is:
o — (XTX)—lXT
¢ Key idea: w* = (X' X) 1 X" also minimizes Ry, (w)!

e We're going to use this frequently!



W.
. . \m}
Alternative solution P
e Our goal is to find the vector w that minimize mean squared error:
Reg() = = |1 — X

—d)
o h ‘D\c
e Strategy: calculus MSE i now functio (

e Problem: This is a function of a vector. What does it even mean to take the
derivative of Rgy(w) with respect to a vector w?
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A function of a vector

e Solution: A function of a vector is really just a function of multiple variables, which
are the components of the vector. In other words,

—

qu(’IU) — qu('wo, Wiy .. ,wd)

where wy, w1, ..., wy are the entries of the vector w.
In our case, w has just two components, wg and w. We'll be more general since
we eventually want to use prediction rules with even more parameters.

e We know how to deal with derivatives of multivariable functions: the gradient!
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The gradient with respect to a vector

e The gradient of Ry, (w) with respect to w is the vector of partial derivatives:

e SLR o
Wy iRy |7 4
V..R. SN g __ ow / R
Yo e {RL i Rsq(W) o 6
- Yh. - _ Qwg

where wy, w1, ..., wy are the entries of the vector w.



Goal

—

e We want to minimize the mean squared error: a§ & Ffunction of W
L1 o
Reg() = = |1 — X

e Strategy:

1. Compute the gradient of Ry, (w).
2. Set it to zero and solve for w.

o The result is the optimal parameter vector w*.

e |et's start by rewriting the mean squared error in a way that will make it easier to
compute its gradient.
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Question =
Answer at q.dsc40a.com S '

|

|
S
&

Which of the following is equivalent to Ry, (w) =
A) L ( — Xw) - (Xw — y) )

ot JTpopr_ A2 4
X5/ i - - Xu) LA U DS Do

@(y Xw)" (y — Xw) :%(5‘X‘\7)T(ﬁx~’)

M o (5 - Xw)(y — Xw)”
(

()

cR™
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Rewriting mean squared error

Remider: | (AB)! = BY A” A (@C) = (A@) C

Ryy(@) = |/ — Xu||* =




(G — 3K -

W

TX.:S’ FT XX )=

- IX31)
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Compute the gradient

dRy,  d

1

d  d©

1

(

n

n

(

—
P

(v-uv—2x"

5y

d

dw

W + ’LTJTXTX’LTJ))

(2X" - w) + 4 (W' X" Xw)
dw

)
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Question =

Answer at q.dsc40a.com

Which of the following is %@’. Y)?
AY-y

B. 27

C. 1

D.0 3 doesn't ,9.,_@—(.»()\ O "

26



Compute the gradient

deq _ d—’ ( 1 ( o 2XT _|_ ’UJTXTX’UJ))
dw dw \ 1
2 (GE 0D - gt )
n \ dw dw D\X-' dw
+ =9 =0 =0 - =k

o Why? g is a constant with respect to w.

. L (2XT* *):2XT

o Why? In groupwork today you will show “%+-a - x = a.
¢ —= (_’TXTXw) = 2X 7T Xw.

o Why? You will prove in homework 4.
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Compute the gradient

dqu = dd* (i( gy —2X" -u?+wTXTXu7))
w w
1/ d d d
— . — — (oxTy .0 (T X T X
n(dﬁ)( )~ 25 ¢ w) + o5 (@ w))
= %(—2ng +2X7Xw) er*
XN nxt

A XA \/‘\:

—

NOV e Nl te s QZ(A&I e 2e0e =0

ve cfor
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The normal equations (again)
e To minimize Ryq(w), set its gradient to zero and solve for w:
oxTiyexTxs=0 JAvide by =L
— X' Xw=X"
e We have seen this system of equations in matrix form before: the normal
equations. Ur\l\ouJL Ca‘(,u(q_; -

e If X X isinvertible, the solution is

W\i?,u w* = (XTX)txt
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The optimal parameter vector, w*

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized Rsq(wo, w1) = = > ¢ (v; — (wo + wiz;))?.

o We found, using calculus, that:

>ic1 (@i —Z)(yi — 9) Oy A Fd THC
= * ( I (A"‘\ gTerevics
(lo‘)}. w4 2?21(wi — 5)2 T o .

weopt W [wh =5 — wiz|

0 ‘)‘{‘l

e Another way of finding optimal model parameters for simple linear regression is to
find the w* that minimizes Ry (w) = < ||y — Xw||>.

o The minimizer, if X1 X is invertible, is the vector |w* = (XTX)_lXT

&LSI el rix
ls{vw\’w vestor 30

e These formulas are equivalent!



Summary: Regression and linear algebra (Solution 1)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:
1 o
X = 1 " W = [w°]
Do w1
1 z,]

—

e How do we make the hypothesis vector, h = X, as close to 7 as possible? Use
the parameter vector w*:

TTJ* _ (XTX)—lXT

e We chose @* so that h* = X@* is the projection of i, onto the span of the
columns of the design matrix, X and minimized the length of the projection error

lel| = [lv — Xwl|. g



Summary: Regression and linear algebra (Solution 2)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:

1 2
1 L9 . Wy
X — . . w =
. . w]_
1 z,
e How do we minimize the mean squared error Ry, (w) = + || — Xl ? Using

calculus the optimal paramter vector w* is:

’ITJ* _ (XTX)—lXT

32



Roadmap

e Next class, we'll present a more general framing of the multiple linear regression
model, that uses d features instead of just two.

e We'll also look at how we can engineer new features using existing features.

o e.g. How can we fit a hypothesis function of the form
H(z) = wy + wiz + woz??
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