

Lecture 11

Regression and Linear Algebra

DSC 40A, Fall 2025

Announcements

- Homework 3 is due on **Friday, October 24th**.
- Homework 1 scores are available on Gradescope.
 - Regrade requests are due tonight.
- The Midterm Exam is on **Monday, Nov 3rd in class**.

• *FAQ week 3 updated*

Agenda

- Regression and linear algebra.
- Finding the optimal parameter vector
 - by minimizing the projection error (linear algebra).
 - by minimizing empirical risk (multivariate calculus).

Question 🤔

Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)

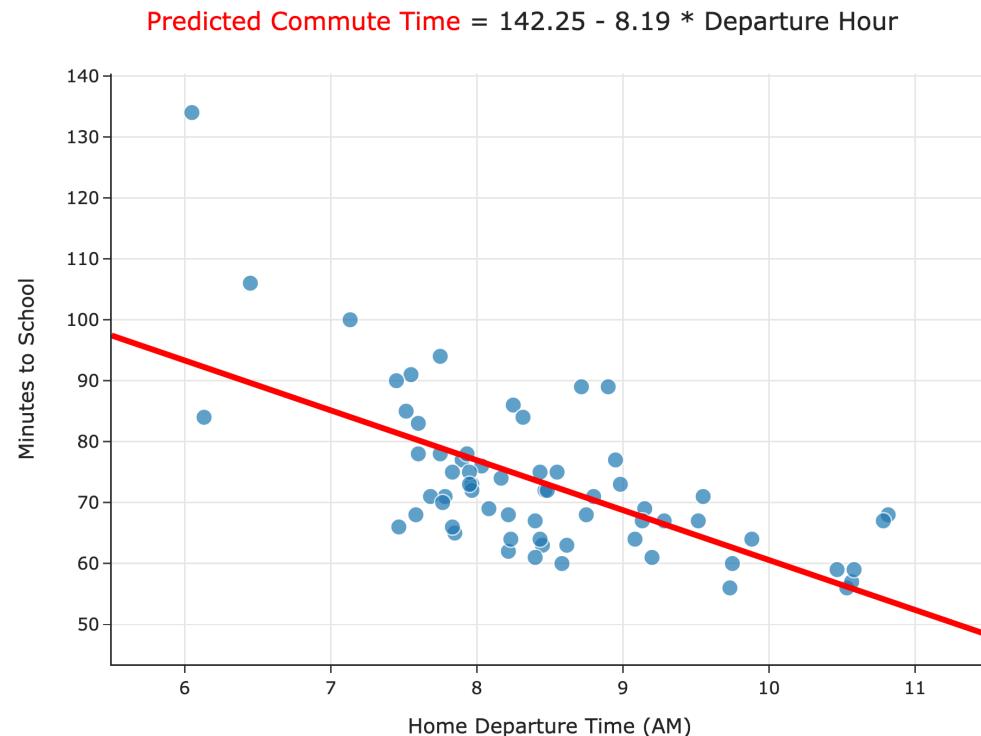
If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Regression and linear algebra

Wait... why do we need linear algebra?

- We want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables), e.g., $H(x) = w_0 + w_1x^{(1)} + w_2x^{(2)}$.
 - Are non-linear in the features, e.g., $H(x) = w_0 + w_1x + w_2x^2$.
- Let's see if we can put what we learned last week to use.

Simple linear regression, revisited



best
intercept
best
slope

- Model: $H(x) = w_0 + w_1x$.
- Loss function: $(y_i - H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2$$

avg sq loss

- Observation: $R_{\text{sq}}(w_0, w_1)$ kind of looks like the formula for the norm of a vector,

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed values.
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

This is the vector of signed errors.

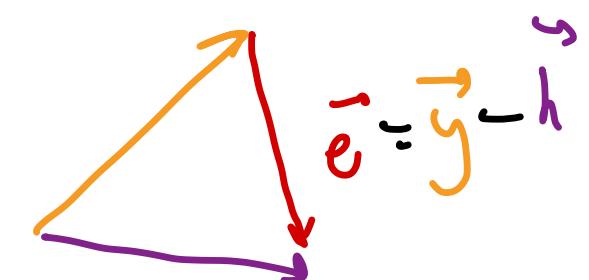
$$\vec{y} = \begin{bmatrix} 120 & \text{min} \\ 42 & \text{min} \\ 57 & \text{min} \\ \vdots & \vdots \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 97 & \text{min} \\ 49 & \text{min} \\ 51 & \text{min} \\ \vdots & \vdots \end{bmatrix}$$

n rows commute

n rows

departure time



Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed values.
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components: $e_i = y_i - H(x_i)$
- Key idea: We can rewrite the mean squared error of H as:

$$R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 = \frac{1}{n} \|\vec{e}\|^2 = \frac{1}{n} \|\vec{y} - \vec{h}\|^2$$

MSE = length of error \vec{e}
squared

known
actual
complaint
↓
prediction

The hypothesis vector

- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- For the linear hypothesis function $H(x) = w_0 + w_1 x$, the hypothesis vector can be written:

$$\vec{h} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix}_{n \times 1}$$

$$= \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}_{(n \times 2)}$$

\times
design matrix

$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix}_{2 \times 1} \leftarrow \text{unknown}$$

$$\begin{bmatrix} 1 & x_i \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = w_0 + w_1 x_i$$

lin comb:

$$w_0 \begin{bmatrix} 1 \\ \vdots \end{bmatrix} + w_1 \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Rewriting the mean squared error

- Define the **design matrix** $\mathbf{X} \in \mathbb{R}^{n \times 2}$ as:

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

- Define the **parameter vector** $\vec{w} \in \mathbb{R}^2$ to be $\vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$.
- Then, $\vec{h} = \mathbf{X}\vec{w}$, so the mean squared error becomes:

$$R_{\text{sq}}(\mathbf{H}) = \frac{1}{n} \|\vec{y} - \vec{h}\|^2 \implies$$

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \mathbf{X}\vec{w}\|^2$$

target observation
features
unknown model parameters

Minimizing mean squared error, again

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized:

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (\textcolor{orange}{y}_i - (w_0 + w_1 \textcolor{blue}{x}_i))^2$$

- Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = [w_0^* \quad w_1^*]^T$ that minimizes:

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \textcolor{blue}{X} \vec{w}\|^2$$

- Do we already know the \vec{w}^* that minimizes $R_{\text{sq}}(\vec{w})$?

An optimization problem we've seen before

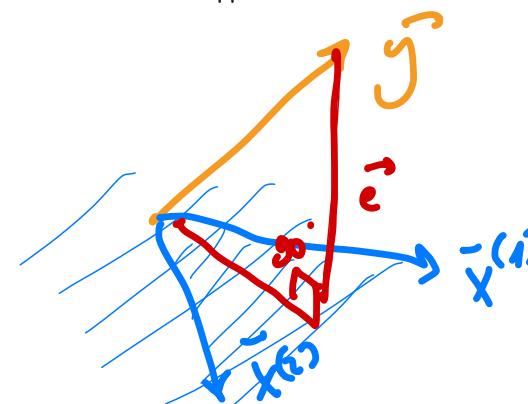
- The optimal parameter vector, $\vec{w}^* = [w_0^* \quad w_1^*]^T$, is the one that minimizes:

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \mathbf{X}\vec{w}\|^2 = \frac{1}{n} \|\vec{e}\|^2$$

- The minimizer of $\|\vec{e}\|$ is the same as the minimizer of $R_{\text{sq}}(\vec{w})$!

$$\vec{w}^* = \arg \min_{\vec{w}} R_{\text{sq}} = \arg \min_{\vec{w}} \|\vec{e}\|$$

- Last week we found that the vector in the span of the columns of \mathbf{X} that is closest to \vec{y} is the vector $\mathbf{X}\vec{w}$ such that $\|\vec{e}\| = \|\vec{y} - \mathbf{X}\vec{w}\|$ is minimized.



The modeling recipe

1. Choose a model.

$$H(x) = [1 \quad \mathbf{x}]^T \vec{w} = w_0 + w_1 \mathbf{x} \quad \text{SLR}$$

2. Choose a loss function.

$$\mathbf{e}_i = \mathbf{y}_i - [1 \quad \mathbf{x}_i]^T \mathbf{w}$$

error per point

3. Minimize average loss to find optimal model parameters.

$$\vec{w}^* = \arg \min_{\vec{w}} R_{\text{sq}}(\vec{w}) = \arg \min_{\vec{w}} \left\{ \frac{1}{n} \|\vec{y} - \mathbf{X} \vec{w}\|^2 \right\} = \arg \min_{\vec{w}} \left\{ \frac{1}{n} \|\vec{e}\|^2 \right\}$$

An optimization problem we've seen before

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the **error vector**, $\vec{e} = \vec{y} - \vec{X}\vec{w}$, is **orthogonal** to the **columns** of \vec{X} . \rightarrow define the span
 - Why? Because this will make the **error vector** as short as possible.
- The \vec{w}^* that accomplishes this satisfies:
$$\underbrace{\vec{X}^T \vec{e}}_{\text{vector}} = 0 \quad \leftarrow \text{zero vector}$$
$$\vec{e} = \vec{y} - \vec{X}\vec{w} \quad (\text{smallest MSE})$$
- Why? Because $\vec{X}^T \vec{e}$ contains the **dot products** of each column in \vec{X} with \vec{e} . If these are all 0, then \vec{e} is **orthogonal** to every column of \vec{X} !

$$\vec{X} = \begin{bmatrix} 1 & \vec{x}_1 \\ \vdots & \vdots \\ 1 & \vec{x}_n \end{bmatrix} = \begin{bmatrix} \vec{1} & \vec{x} \end{bmatrix}$$

$$\vec{X}^T \vec{e} = \begin{bmatrix} -\vec{1}^T - \\ -\vec{x}^T - \end{bmatrix} \vec{e} = \begin{bmatrix} \vec{1}^T \vec{e} \\ \vec{x}^T \vec{e} \end{bmatrix}$$

(orthogonal to
 $\text{span}\{\vec{1}, \vec{x}\}$)

The normal equations

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the **error vector**, $\vec{e} = \vec{y} - \vec{X}\vec{w}$, is **orthogonal** to the **columns of \vec{X}** .
- The \vec{w}^* that accomplishes this satisfies:
- Assuming $\vec{X}^T \vec{X}$ is invertible, this is the vector:

$$\vec{X}^T \vec{e} = \vec{0}$$

$$\vec{X}^T (\vec{y} - \vec{X}\vec{w}^*) = \vec{0}$$

$$\vec{X}^T \vec{y} - \vec{X}^T \vec{X} \vec{w}^* = \vec{0}$$

- The **normal equations**:

$$\implies \vec{X}^T \vec{X} \vec{w}^* = \vec{X}^T \vec{y}$$

*for SLR
2 el. with 2 var.*

design matrix *observation vector*

- Assuming $\vec{X}^T \vec{X}$ is invertible, this is the vector:

$$\vec{w}^* = (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{y}$$

- This is a big assumption, because it requires $\vec{X}^T \vec{X}$ to be **full rank**.
- If $\vec{X}^T \vec{X}$ is not full rank, then there are infinitely many solutions to the normal equations.

An optimization problem, solved

- We just used linear algebra to solve an optimization problem.
- Specifically, the function we minimized is:

$$\text{error}(\vec{w}) = \|\vec{y} - \mathbf{X}\vec{w}\|$$

no calculus!

- The input, \vec{w}^* , to $\text{error}(\vec{w})$ that minimizes it is one that satisfies the **normal equations**:

$$\mathbf{X}^T \mathbf{X} \vec{w}^* = \mathbf{X}^T \vec{y}$$

If $\mathbf{X}^T \mathbf{X}$ is invertible, then the **unique** solution is:

$$\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$$

- Key idea: $\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$ also minimizes $R_{\text{sq}}(\vec{w})$!
- We're going to use this frequently!

Alternative solution

$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

- Our goal is to find the vector \vec{w} that minimize mean squared error:

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \vec{X}\vec{w}\|^2$$

MSE is now function of \vec{w}

- Strategy: calculus
- Problem: This is a function of a vector. What does it even mean to take the derivative of $R_{\text{sq}}(\vec{w})$ with respect to a vector \vec{w} ?

A function of a vector

- **Solution:** A function *of a vector* is really just a function *of multiple variables*, which are the components of the vector. In other words,

$$R_{\text{sq}}(\vec{w}) = R_{\text{sq}}(w_0, w_1, \dots, w_d)$$

where w_0, w_1, \dots, w_d are the entries of the vector \vec{w} .

In our case, \vec{w} has just two components, w_0 and w_1 . We'll be more general since we eventually want to use prediction rules with even more parameters.

- We know how to deal with derivatives of multivariable functions: the gradient!

The gradient with respect to a vector

- The gradient of $R_{\text{sq}}(\vec{w})$ with respect to \vec{w} is the vector of partial derivatives:

For SLR

$$\begin{bmatrix} \frac{\partial R_{\text{sq}}}{\partial w_0} \\ \frac{\partial R_{\text{sq}}}{\partial w_1} \end{bmatrix} \in \mathbb{R}^2$$

$$\nabla_{\vec{w}} R_{\text{sq}}(\vec{w}) = \frac{dR_{\text{sq}}}{d\vec{w}} = \begin{bmatrix} \frac{\partial R_{\text{sq}}}{\partial w_0} \\ \frac{\partial R_{\text{sq}}}{\partial w_1} \\ \vdots \\ \frac{\partial R_{\text{sq}}}{\partial w_d} \end{bmatrix} \in \mathbb{R}^d$$

where w_0, w_1, \dots, w_d are the entries of the vector \vec{w} .

Goal

- We want to minimize the mean squared error: *as a function of \vec{w}*

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \vec{X}\vec{w}\|^2$$

- Strategy:
 1. Compute the gradient of $R_{\text{sq}}(\vec{w})$.
 2. Set it to zero and solve for \vec{w} .
 - The result is the optimal parameter vector \vec{w}^* .
- Let's start by rewriting the mean squared error in a way that will make it easier to compute its gradient.

Question 🤔

Answer at q.dsc40a.com

Which of the following is equivalent to $R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - X\vec{w}\|^2$?

A) $\frac{1}{n} (\vec{y} - X\vec{w}) \cdot (X\vec{w} - \vec{y})$

~~B) $\frac{1}{n} \sqrt{(\vec{y} - X\vec{w}) \cdot (y - X\vec{w})}$~~

~~C) $\frac{1}{n} (\vec{y} - X\vec{w})^T (y - X\vec{w})$~~

~~D) $\frac{1}{n} (\vec{y} - X\vec{w}) (y - X\vec{w})^T$~~

ρ is a scalar

hint:
$$\frac{1}{n} \|\vec{e}\|^2 = \frac{1}{n} \vec{e} \cdot \vec{e} = \frac{1}{n} \vec{e}^T \vec{e}$$

$$= \frac{1}{n} (\vec{y} - X\vec{w})^T (\vec{y} - X\vec{w})$$

$$\left(\quad \right)^T \in \mathbb{R}^{n \times n}$$

Rewriting mean squared error

Reminder: $(AB)^T = B^T A^T$

$$A(BC) = (AB)C$$

$$\begin{aligned}
 R_{\text{sq}}(\vec{w}) &= \frac{1}{n} \|\vec{y} - \mathbf{X}\vec{w}\|^2 = \\
 &= \frac{1}{n} (\vec{y} - \mathbf{X}\vec{w})^T (\vec{y} - \mathbf{X}\vec{w}) \\
 &= \frac{1}{n} (\vec{y}^T - (\mathbf{X}\vec{w})^T) (\vec{y} - \mathbf{X}\vec{w}) \\
 &= \frac{1}{n} (\vec{y}^T - \vec{w}^T \mathbf{X}^T) (\vec{y} - \mathbf{X}\vec{w}) \\
 &= \frac{1}{n} (\underbrace{\vec{y}^T}_{\text{cyan}} - \underbrace{\vec{w}^T}_{\text{green}} \underbrace{\mathbf{X}^T}_{\text{yellow}}) (\underbrace{\vec{y}}_{\text{magenta}} - \underbrace{\mathbf{X}\vec{w}}_{\text{yellow}}) \\
 &= \frac{1}{n} \left(\underbrace{\vec{y}^T \vec{y}}_{\text{cyan}} - \underbrace{\vec{y}^T \mathbf{X} \vec{w}}_{\text{yellow}} - \underbrace{\vec{w}^T \mathbf{X}^T \vec{y}}_{\text{green}} + \underbrace{\vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}}_{\text{yellow}} \right) = \\
 &\quad \vec{y} \cdot (\mathbf{X}\vec{w}) = (\mathbf{X}^T \vec{y}) \cdot \vec{w} \quad \vec{w}^T (\mathbf{X}^T \vec{y}) = \vec{w} \cdot (\mathbf{X}^T \vec{y}) \\
 &\quad \xrightarrow{\text{equal}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{1}{n} (\tilde{y}^T \tilde{y} - \underbrace{\tilde{y}^T X \tilde{w}}_{\text{highlighted}} - \tilde{w}^T X^T \tilde{y} + \tilde{w}^T X^T X \tilde{w}) \\
 &= \frac{1}{n} (||\tilde{y}||^2 - 2 \boxed{(X^T \tilde{y}) \cdot \tilde{w}} + ||X \tilde{w}||^2)
 \end{aligned}$$

Compute the gradient

$$\begin{aligned}\frac{dR_{\text{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} (\vec{y} \cdot \vec{y} - 2\mathbf{X}^T \vec{y} \cdot \vec{w} + \vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) \right) \\ &= \frac{1}{n} \left(\frac{d}{d\vec{w}} (\vec{y} \cdot \vec{y}) - \frac{d}{d\vec{w}} (2\mathbf{X}^T \vec{y} \cdot \vec{w}) + \frac{d}{d\vec{w}} (\vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) \right) \\ &= 0\end{aligned}$$

Question 🤔

Answer at q.dsc40a.com

Which of the following is $\frac{d}{d\vec{w}} (\vec{y} \cdot \vec{y})$?

A. $\vec{y} \cdot \vec{y}$

B. $2\vec{y}$

C. 1

D. 0

\vec{y} doesn't depend on \vec{w}

Compute the gradient

$$\begin{aligned}\frac{dR_{\text{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} (\vec{y} \cdot \vec{y} - 2\mathbf{X}^T \vec{y} \cdot \vec{w} + \vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) \right) \\ &= \frac{1}{n} \left(\frac{d}{d\vec{w}} (\vec{y} \cdot \vec{y}) - \frac{d}{d\vec{w}} (2\mathbf{X}^T \vec{y} \cdot \vec{w}) + \frac{d}{d\vec{w}} (\vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) \right) \\ &\quad = 0 \quad = 2\mathbf{X}^T \vec{y} \quad = 2\mathbf{X}^T \mathbf{X} \vec{w}\end{aligned}$$

- $\frac{d}{d\vec{w}} (\vec{y} \cdot \vec{y}) = 0$.
 - Why? \vec{y} is a constant with respect to \vec{w} .
- $\frac{d}{d\vec{w}} (2\mathbf{X}^T \vec{y} \cdot \vec{w}) = 2\mathbf{X}^T y$.
 - Why? In groupwork today you will show $\frac{d}{d\vec{x}} \vec{a} \cdot \vec{x} = \vec{a}$.
- $\frac{d}{d\vec{w}} (\vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) = 2\mathbf{X}^T \mathbf{X} \vec{w}$.
 - Why? You will prove in homework 4.

Compute the gradient

$$\begin{aligned}\frac{dR_{\text{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} (\vec{y} \cdot \vec{y} - 2\mathbf{X}^T \vec{y} \cdot \vec{w} + \vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) \right) \\ &= \frac{1}{n} \left(\frac{d}{d\vec{w}} (\vec{y} \cdot \vec{y}) - \frac{d}{d\vec{w}} (2\mathbf{X}^T \vec{y} \cdot \vec{w}) + \frac{d}{d\vec{w}} (\vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}) \right) \\ &= \frac{1}{n} \left(-2\mathbf{X}^T \vec{y} + 2\mathbf{X}^T \mathbf{X} \vec{w} \right) \in \mathbb{R}^n\end{aligned}$$

Now we need to set equal to zero $\vec{w} = 0$
vector

The normal equations (again)

- To minimize $R_{\text{sq}}(\vec{w})$, set its gradient to zero and solve for \vec{w} :

$$\begin{aligned} -2\mathbf{X}^T \vec{y} + 2\mathbf{X}^T \mathbf{X} \vec{w} &= 0 && \text{divide by } -2 \\ \implies \mathbf{X}^T \mathbf{X} \vec{w} &= \mathbf{X}^T \vec{y} \end{aligned}$$

- We have seen this system of equations in matrix form before: the normal equations. *through calculus*
- If $\mathbf{X}^T \mathbf{X}$ is invertible, the solution is

unique $\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$

The optimal parameter vector, \vec{w}^*

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (\textcolor{blue}{y}_i - (w_0 + w_1 \textcolor{blue}{x}_i))^2$.

- We found, using calculus, that:

optimal slope

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x}.$$

data statistics

intercept

$$w_0^* = \bar{y} - w_1^* \bar{x}.$$

- Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \vec{X}\vec{w}\|^2$.

- The minimizer, if $\vec{X}^T \vec{X}$ is invertible, is the vector $\vec{w}^* = (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{y}$.

- These formulas are equivalent!

design matrix
observation vector

Summary: Regression and linear algebra (Solution 1)

- Define the **design matrix** $\mathbf{X} \in \mathbb{R}^{n \times 2}$, **observation vector** $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

- How do we make the **hypothesis vector**, $\vec{h} = \mathbf{X}\vec{w}$, as close to \vec{y} as possible? Use the parameter vector \vec{w}^* :

$$\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$$

- We chose \vec{w}^* so that $\vec{h}^* = \mathbf{X}\vec{w}^*$ is the **projection of \vec{y} onto the span of the columns of the design matrix, \mathbf{X}** and minimized the length of the projection error $\|\vec{e}\| = \|\vec{y} - \mathbf{X}\vec{w}\|$.

Summary: Regression and linear algebra (Solution 2)

- Define the **design matrix** $\mathbf{X} \in \mathbb{R}^{n \times 2}$, **observation vector** $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

- How do we minimize the mean squared error $R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - \mathbf{X}\vec{w}\|^2$? Using calculus the optimal parameter vector \vec{w}^* is:

$$\vec{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$$

Roadmap

- Next class, we'll present a more general framing of the multiple linear regression model, that uses d features instead of just two.
- We'll also look at how we can **engineer** new features using existing features.
 - e.g. How can we fit a hypothesis function of the form
$$H(x) = w_0 + w_1x + w_2x^2$$