Lecture 12

Multiple Linear Regression

DSC 40A, Fall 2025



Agenda

e Recap: regression and linear algebra
e Multiple linear regression.

e |nterpreting parameters.
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Regression and linear algebra (Solution 1)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:
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e How do we make the hypothesis vector, h = X, as close to 7 as possible? Use

the parameter vector w*:
TTJ* _ (XTX)—lXT

e Solution: We chose * so that h* = X" is the projection of 1 onto the span of
the columns of the design matrix, X and minimized the length of the projection
error ||e|| = ||y — Xw|.



Regression and linear algebra (Solution 2)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:

1 2
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e How do we minimize the mean squared error Ry, (w) = + || — Xl ? Using

calculus the optimal paramter vector w* is:
’ITJ* _ (XTX)—lXT

e Solution: we computed the gradient of Rg,(w), set it to zero and solved for w.






departure_hour day_of month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.



Incorporating multiple features

* |n the context of the commute times dataset, the simple linear regression model
we fit was of the form:

pred. commute = H(departure hour)
= wy + w; - departure hour

e Now, we'll try and fit a multiple linear regression model of the form:

pred. commute = H(departure hour)
= wo + wj - departure hour + wy - day of month

e Linear regression with multiple features is called multiple linear regression.

e How do we find wy, w3, and w3?



Geometric interpretation

e The hypothesis function:

H (departure hour) = wy + w; - departure hour
looks like a line in 2D.
e Questions:

o How many dimensions do we need to graph the hypothesis function:

H (departure hour) = wy + w; - departure hour 4+ wy - day of month

o What is the shape of the hypothesis function?
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Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through the cloud of points. 10



The setup

e Suppose we have the following dataset.

departure_hour day of month minutes

row
1 8.45 22 63.0
2 8.90 28 89.0
3 8.72 18 89.0

e We can represent each day with a feature vector, z:
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The hypothesis vector

e When our hypothesis function is of the form:

H (departure hour) = wg + w; - departure hour + ws - day of month

the hypothesis vector h € R™ can be written as:

[ H(departure hour,, day ) | 1 departure hour; day,;| . _
H (departure hour,, day,) 1 departure hour, day,

>
||
||
g

H (departure hour,,, day,,) | 1 departure hour, day, |




Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R"*
and observation vector

1 departure hour; day; |
1 departure hour, day,

1 departure hour,, day,, |

e Then, all we need to do is solve the normal equations:
X' Xw* = x*
If X1 X is invertible, we know the solution is:

TTJ* _ (XTX)_1XT



Notation for multiple linear regression
e We will need to keep track of multiple features for every individual in our dataset.
o In practice, we could have hundreds or thousands of features!

e As before, subscripts distinguish between individuals in our dataset. We have n
individuals, also called training examples.

e Superscripts distinguish between features. We have d features.

departure hour: 7
day of month: z(?)

Think of :1:(1), :1;(2), ... as new variable names, like new letters.
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Augmented feature vectors

e The augmented feature vector Aug(z) is the vector obtained by adding a 1 to the

front of feature vector z:

Aug(7)

81
|

e Then, our hypothesis function is:

gl

Wq

H(Z) = wo + w1z + woz® + ... 4+ waz'?

— i - Aug(%)
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The general problem

e We have n data points, (51, ), (552, ), e (fn, )
where each Z; is a feature vector of d features:
e
e
L; =
2,7

e We want to find a good linear hypothesis function:

H(Z) = wo + w1z + woz® + ... 4 waz'?
= w - Aug(z)



The general solution

e Define the design matrix X & R™*(4*1) and observation vector

1 a:gl) :L'(lz) e ac(ld)- "Aug(77)T -
1 :cél) acg) . xéd) Aug(zs)T
X = _ _
1 xfle) :137(12) e xfzd)_ _Aug(fn)T_ | Yn_

e Then, solve the normal equations to find the optimal parameter vector, w*:

XT'Xxw*= X"



Terminology for parameters
e With d features, w has d + 1 entries.

* wy Is the bias, also known as the intercept.

e wi,Wsy,...,Wq each give the weight, or coefficient, or slope, of a feature.

H(Z) = wo + w1z + woz® + ...+ wgz'?
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Example: Predicting sales

e For each of 26 stores, we have:
o net sales,
o square feet,
o Inventory,
o advertising expenditure,
o district size, and
o number of competing stores.

e Goal: Predict net sales given the other five features.

e To begin, we'll start trying to fit the hypothesis function to predict sales:

H (square feet, competitors) = wgy + w; - square feet + ws - competitors
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Question =

Answer at g.dsc40a.com

H (square feet, competitors) = wg + ws - square feet + wy - competitors

What will be the signs of w] and w3?

e A w] + w5+

e B.w] + (T
e Alwi — wy+
e Aw] — Wy —

Let's find out! Follow along in this notebook.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2025-fa&subPath=lectures/lec12/lec12_code.ipynb

T

Question =

Answer at q.dsc40a.com

Which feature is most "important"?

e A.square feet: w] = 16.202
e B. competitors: w; = —5.311
e C.inventory: w; = 0.175

e D. advertising: w3 = 11.526
e E.district size: wy = 13.580


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Which features are most "important"?

e The most important feature is not necessarily the feature with largest magnitude
weight.
e Features are measured in different units, i.e. different scales.

o Suppose | fit one hypothesis function, H, with sales in US dollars, and
another hypothesis function, Hs, with sales in Japanese yen (1 USD ~ 157
yen).

o Sales is just as important in both hypothesis functions.

o But the weight of sales in H1 will be 157 times larger than the weight of sales
N Hg.
e Solution: If you care about the interpretability of the resulting weights, standardize

each feature before performing regression, i.e. convert each feature to standard
units.
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Standard units

e Recall: to convert a feature x1, €2, ..., x, to standard units, we use the formula:

e Example: 1,7,7,09.

LE7TH749 _ 24 _ g

4 4
o Standard deviation:

o Mean:

SD:\/1((1—6)2+(7—6)2+(7—6)2+(9—6)2): 1ls6=3

4 4
o Standardized data:
1—-06 5) 7T—6 1 1 9—-6
]. —> = \|—— 7 — = |— 7 — —> —
3 3 3 3 ~l3l 97 T3




Standard units for multiple linear regression

e The result of standardizing each feature (separately!) is that the units of each
feature are on the same scale.

o There's no need to standardize the outcome (net sales), since it's not being
compared to anything.

o Also, we can't standardize the column of all 1s.

* Then, solve the normal equations. The resulting wy, wi, . .., w}; are called the
standardized regression coefficients.

e Standardized regression coefficients can be directly compared to one another.

e Note that standardizing each feature does not change the MSE of the resulting
hypothesis function!
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Once again, let's try it out! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2025-fa&subPath=lectures/lec12/lec12_code.ipynb

Summary
e The normal equations can be used to solve multiple linear regression problems.

e |nterpret the parameters as weights. Signs give meaningful information. Can only
compare weight magnitude if data is standardized.

e On Friday: nonlinear features!
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