Lecture 12

Multiple Linear Regression

DSC 40A, Fall 2025



Agenda

e Recap: regression and linear algebra
e Multiple linear regression.

e |nterpreting parameters.
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Regression and linear algebra (Solution 1)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:
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e How do we make the hypothesis vector, h = X, as close to 7 as possible? Use

the parameter vector w*:
TTJ* _ (XTX)—lXT

e Solution: We chose * so that hb* = X" is the projection of 1 onto the span of
the columns of the design matrix, X and minimized the length of the projection
error ||e|| = ||y — Xw|.



Regression and linear algebra (Solution 2)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:

1z
L= L |wo
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e How do we minimize the mean squared error Ry, (w) = + || — Xl ? Using
calculus the optimal paramter vector w* is: V Qs o)< 0

’lf}* _ (XTX)—lXT

e Solution: we computed the gradient of Rg,(w), set it to zero and solved for w.
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departure_hour day_of _month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.



Incorporating multiple features

* |n the context of the commute times dataset, the simple linear regression model
we fit was of the form: one  featunC

pred. commute = H(departure hour)
= wy + w; - departure hour

e Now, we'll try and fit a multiple linear regression model of the form:

two Leatwss
pred. commute = H(departure hour) z
= wo + w; - departure hour + wy - day of month

e Linear regression with multiple features is called multiple linear regreslsion.
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e The hypothesis function:

Y
o ] QDMM%*4
Geometric interpretation /
pd Y

H (departure hour) = wy + w; - departure hour | qurmt
looks like a line in 2D.
e Questions:

o How many dimensions do we need to graph the hypothesis function:

H (departure hour) = wy + w; - departure hour 4+ wy - day of month

o What is the shape of the hypothesis function?
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Commute Time vs. Departure Hour and Day of Month
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Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through the cloud of points. 10



The setup

e Suppose we have the following dataset.

departure_hour day of month 'minutes

Q@
row )éﬂ )( )
[ —
1 8.45 63.0
2 89.0

3 @’ 17 89.0

e We can represent each day with a feature vector, z:
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The hypothesis vector ;\ < )&L—? molel
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e When our hypothesis function is of the form!

H (departure hour) = wg + w; - departure hour + ws - day of month

the hypothesis vector h € R™ can be written as: )< axg -
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Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R"*

and observation vector

1 departure hour; day; |
1 departure hour, day,

1 departure hour,, day,, |

e Then, all we need to do is solve the normal equations:
X' Xw* = x*
If X* X is invertible, we know the solution is:
D — (XTX)—1XT
2 %3
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Xa = 1st Jdate ‘,.‘.w 6/k1’

X(‘l) - 451‘ 'ﬂ?&{‘hh é/KA
e We will need to keep track of multiple features for every individual in our dataset.

Notation for multiple linear regression

o In practice, we could have hundreds or thousands of features!

e As before, subscripts distinguish between individuals in our dataset. We have n
individuals, also called training examples.

e Superscripts distinguish between features. We have d features. X

) oy
“ XX

/
departure hour: 1) € R"

day of month: z? € iR )

Think of :13(1), w(z), ... as new variable names, like new letters.
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Augmented feature vectors

e The augmented feature vector Aug(z) is the vector obtained by adding a 1 to the

front of feature vector z: gt arkur _
() !
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e Then, our hypothesis function IS
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The general problem (4,94 X, 95)
/ /"
e We have n data points, (Z1, 71), (Z2,72),- -+, (Zn, v2),
where each Z; is a feature vector of d features: Xcélﬁ
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. Z; d
L = . EIR \_ B
£

e We want to find a good linear hypothesis function:

H(Z) = wo + w1z + woz® + ... 4 waz'?
= w - Aug(7)

How o fnd ﬁ*’(""/“"w""") 16



The general solution

e Define the designmatrix X € R™*(4*1) and observation vector

M (1) z i — o
ottt G0 D [
1 :I:él) CEgz) xéd) Aug(zs)?
_X — . . . . — . —
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e Then, solve the nTlrmaI equations to ?l(ng the optimal parameter vector, w*:
X' Xw* = x*
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Terminology for parameters
e With d features, w has d + 1 entries.

* wy Is the bias, also known as the intercept.

e wi,Wsy,...,Wq each give the weight, or coefficient, or slope, of a feature.

H(Z) = wo + w1z + woz® + ...+ wgz'?
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Example: Predicting sales

)
e For each of Z# stores, we have:

o [net sales,

o |square feet, X

o [inventory, 236
o| advertising expenditure, X

J district size, and S

ol number of competing stores.

e Goal: Predict net sales given the other five features.
e To begin, we'll start trying to fit the hypothesis function to predict sales:

H (square feet, competitors) = wg + w; - square feet + ws - competitors
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Question =

Answer at g.dsc40a.com

H (square feet, competitors) = wg + ws - square feet + wy - competitors

[._, ')l 5'ﬂc~u

What will be the signs of w] and w3?

Se | Mo
e A w] + w5+ L
’L. B.wy + w;;] ) Mere Con f,uf'f'l-o-l\;
o« A w] — wo+ Sell  les

e Aw] — Wy —

Let's find out! Follow along in this notebook.
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