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Announcements

◦ Gal is out today so Sawyer is lecturing in her place (hence slightly different
slides)

◦ Your midterm exam will take place Monday, Nov. 3rd!

◦ 50 minutes on paper, no calculators or electronics permitted

◦ You are allowed to bring a single double-sided page of notes

◦ Seats are assigned; will provide details during Discussion today and
Campuswire afterwards

◦ Content: Lectures 1-13, Homeworks 1-4, Groupworks 1-5

◦ Prepare by practicing old exam problems on practice.dsc40a.com

practice.dsc40a.com
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Announcements

Varun and Owen will be hosting a midterm review session this Thursday 10/30
from 5pm-7pm in Ledden Auditorium (near HSS/APM)

Stay tuned for further details via Campuswire



Recap from last week

On Friday you covered a few topics that build on our work with simple linear
models and multiple regression:

◦ Standardizing features xi (su) =
xi−x
σx

,

H(x) = w0 + w1x1 (su) + . . .+ wdxd (su)

◦ Adding polynomial terms to the hypothesis function, e.g.,

H(x) = w0 + w1x + w2x
2,

◦ Adding terms from combinations of features:

H(sqft, comp) = . . .+ w4(sqft · comp) + . . .

Question: What does each of these have in common?
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Recap from last week

On Friday you covered a few topics that build on our work with simple linear
models and multiple regression:

◦ Standardizing features xi (su) =
xi−x
σx

,

H(x) = w0 + w1x1 (su) + . . .+ wdxd (su)

◦ Adding polynomial terms to the hypothesis function, e.g.,

H(x) = w0 + w1x + w2x
2,

◦ Adding terms from combinations of features:

H(sqft, comp) = ...+ w4(sqft · comp) + ...

Question: What do each of these have in common?

These are all linear in the weights wi .



What if we want to use a hypothesis function that is nonlinear in the weights
and/or features?

Example A nonlinear hypothesis function

Consider the following hypothesis function, which depends on a single
scalar-valued feature and two weights w0,w1:

H(x) = w0e
w1x .

This function is nonlinear in both the weights and the feature x . We
can create a new hypothesis function T (x) = b0 + b1x , which is linear
in the weights b0, b1, by applying the transformation

T (x) = ln(H(x)) = ln(w0) + w1x .

The weights are related by the equations b0 = ln(w0) and b1 = w1.
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Example A nonlinear hypothesis function

T (x) = ln(H(x)) = ln(w0) + w1x

Then, we can fit the linear hypothesis function T (x) = b0 + b1x to data
using the normal equations to obtain optimal weights b∗

0 , b
∗
1 .

Finally, we
can recover the optimal weights for the original hypothesis via

w∗
0 = eb

∗
0 ,

w∗
1 = b∗

1 .
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We will explore this in an interactive notebook, continuing from last week’s
example.

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2025-fa&subPath=lectures/lec13/lec13-code.ipynb


Let’s do a more detailed example.

Example Drink up!

You operate a beverage bottling plant in the Southwestern US. Recently
you collected data over the course of twelve weeks i = 1, . . . , 12, cap-
turing the following statistics:

◦ x
(1)
i , the labor-hours of the plant during week i ,

◦ x
(2)
i , the electricity consumed in the plant during week i ,

◦ x
(3)
i , the materials input (kg of syrup/concentrate), again during
week i .

You would like to model yi , the liters of finished bottled product during
week i , in terms of measurable quantities.
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Example Drink up!

After discussing things with your in-house econometrics guru, you arrive
at the following hypothesis function:

H(x⃗) = w0(x
(1))w1(x (2))w2(x (3))w3 .

This is an example of a Cobb-Douglas production function, commonly
used in economics to model output as a function of multiple inputs.

Note that this hypothesis function is nonlinear in both the weights wi

and the features x (j).

To fit this model to data, we will need to perform a transformation. By
using a logarithm, we can obtain a new hypothesis function T (x⃗) that
is linear in the weights:

T (x⃗) = ln(H(x⃗))

= ln(w0) + w1 ln(x
(1)) + w2 ln(x

(2)) + w3 ln(x
(3)).
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T (x⃗) = ln(H(x⃗))

= ln(w0) + w1 ln(x
(1)) + w2 ln(x

(2)) + w3 ln(x
(3)).

We can now fit the linear hypothesis function

T (x⃗) = b0 + b1z
(1) + b2z

(2) + b3z
(3),

where we have defined the transformed features

z (j) = ln(x (j)), j = 1, 2, 3,

using the normal equations to obtain optimal weights b∗
0 , b

∗
1 , b

∗
2 , b

∗
3 .
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Example Drink up!

Finally, we can recover the optimal weights for the original hypothesis
via

w∗
0 = eb

∗
0 ,

w∗
1 = b∗

1 ,

w∗
2 = b∗

2 ,

w∗
3 = b∗

3 .

Note: unlike before, we need to transform our features as well as our
weights!



Question

Answer at q.dsc40a.com.

Which of the following hypothesis functions is not linear in the parameters?

(A) H(x⃗) = w1

(
x (1)x (2)

)
+

w2

x (1)
sin

(
x (2)

)
(B) H(x⃗) = 2w1 x (1)

(C) H(x⃗) = w⃗ ·Aug(x⃗)

(D) H(x⃗) = w1 cos
(
x (1)

)
+ w2 2

x(2) log x(3)

(E) More than one of the above.

https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
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Have you tried using logarithms?

xkcd #451

https://xkcd.com/451/


Sometimes, it’s just not possible to transform a hypothesis function to be linear
in terms of some parameters.

In those cases, you’d have to resort to other methods of finding the optimal
parameters.

◦ For example, H(x) = w0 sin(w1x) can’t be transformed to be linear.

◦ But there are other methods of minimizing mean squared error:

Rsq(w0,w1) =
1

n

n∑
i=1

(
yi − w0 sin(w1x)

)2
.

◦ One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work
with.



Sometimes, it’s just not possible to transform a hypothesis function to be linear
in terms of some parameters.

In those cases, you’d have to resort to other methods of finding the optimal
parameters.

◦ For example, H(x) = w0 sin(w1x) can’t be transformed to be linear.

◦ But there are other methods of minimizing mean squared error:

Rsq(w0,w1) =
1

n

n∑
i=1

(
yi − w0 sin(w1x)

)2
.

◦ One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work
with.



Sometimes, it’s just not possible to transform a hypothesis function to be linear
in terms of some parameters.

In those cases, you’d have to resort to other methods of finding the optimal
parameters.

◦ For example, H(x) = w0 sin(w1x) can’t be transformed to be linear.

◦ But there are other methods of minimizing mean squared error:

Rsq(w0,w1) =
1

n

n∑
i=1

(
yi − w0 sin(w1x)

)2
.

◦ One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work
with.



Sometimes, it’s just not possible to transform a hypothesis function to be linear
in terms of some parameters.

In those cases, you’d have to resort to other methods of finding the optimal
parameters.

◦ For example, H(x) = w0 sin(w1x) can’t be transformed to be linear.

◦ But there are other methods of minimizing mean squared error:

Rsq(w0,w1) =
1

n

n∑
i=1

(
yi − w0 sin(w1x)

)2
.

◦ One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work
with.



Sometimes, it’s just not possible to transform a hypothesis function to be linear
in terms of some parameters.

In those cases, you’d have to resort to other methods of finding the optimal
parameters.

◦ For example, H(x) = w0 sin(w1x) can’t be transformed to be linear.

◦ But there are other methods of minimizing mean squared error:

Rsq(w0,w1) =
1

n

n∑
i=1

(
yi − w0 sin(w1x)

)2
.

◦ One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work
with.



Sometimes, it’s just not possible to transform a hypothesis function to be linear
in terms of some parameters.

In those cases, you’d have to resort to other methods of finding the optimal
parameters.

◦ For example, H(x) = w0 sin(w1x) can’t be transformed to be linear.

◦ But there are other methods of minimizing mean squared error:

Rsq(w0,w1) =
1

n

n∑
i=1

(
yi − w0 sin(w1x)

)2
.

◦ One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work
with.



Roadmap

◦ This is the end of the content that’s in scope for the Midterm Exam.

◦ Now, we’ll introduce gradient descent, a technique for minimizing
functions that can’t be minimized directly using calculus or linear algebra.

◦ After the Midterm Exam, we’ll switch gears to probability theory.
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DSC 40A: Theoretical Foundations of Data Science

Lecture 14 Part I
Gradient Descent

October 27, 2025



Minimizing empirical risk

◦ Repeatedly, we’ve been tasked with minimizing the value of empirical risk
functions.

◦ Why? To help us find the best model parameters, h∗ or w⃗ ∗, which
help us make the best predictions!

◦ We’ve minimized empirical risk functions in various ways.

◦ Rsq(h) =
1

n

∑n
i=1(yi − h)2 critical points where R ′ = 0

◦ Rabs(w0,w1) =
1

n

∑n
i=1 | yi − (w0 + w1x)| Brute force (Hw3, P7)

◦ Rsq(w⃗) =
1

n
∥y⃗ − Xw⃗∥2 projections or ∇R = 0⃗
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Minimizing arbitrary functions

◦ Assume f (t) is some differentiable single-variable function.

◦ When tasked with minimizing f (t), our general strategy has been to:

1. Find
df

dt
(t), the derivative of f .

2. Find the input t∗ such that
df

dt
(t∗) = 0.

3. Check that
d2f

dt2
(t∗) > 0 so that t∗ is a true minimizer.

◦ However, there are cases where we can find
df

dt
(t), but it is either difficult

or impossible to solve
df

dt
(t∗) = 0.

df

dt
(t) = 5t4 − t3 − 5t2 + 2t − 9

◦ Then what?
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When we can’t directly solve for the minimizer of a function, we can
approximate the minimizer using an iterative method called gradient descent.

The idea is to start at some initial guess t0 and then iteratively improve our
guess by taking steps in the direction of steepest descent (i.e., the negative
gradient).

Over time, these steps will (hopefully) lead us to a point close to the true
minimizer t∗.
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