

Lectures 15-16

Gradient Descent and Convexity

DSC 40A, Fall 2025

Agenda

- Minimizing functions using gradient descent. ← today
- Convexity.
- More examples.
 - Huber loss.
 - Gradient descent with multiple variables.

- FAQs updated
- No HW due next week
- review Thurs. evening

Question 🤔

Answer at q.dsc40a.com

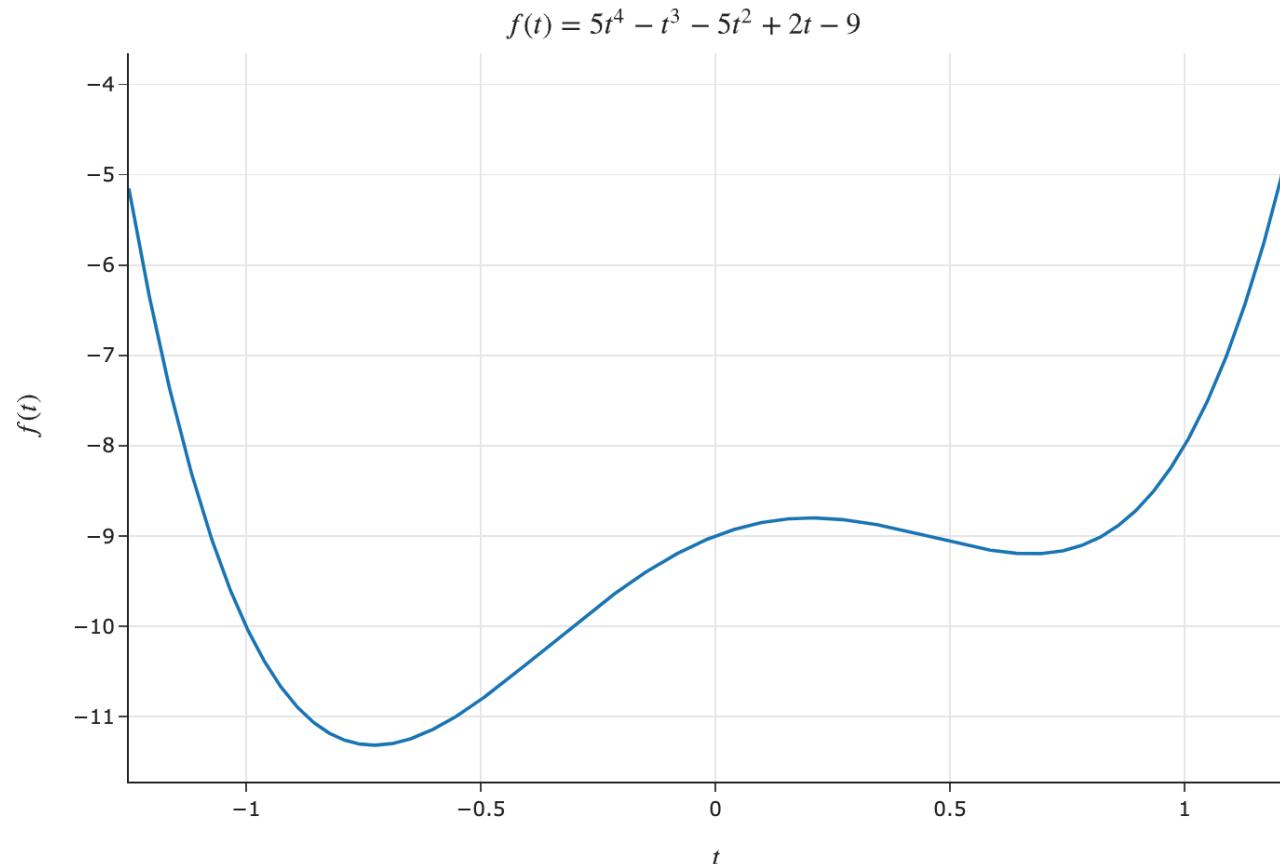
Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

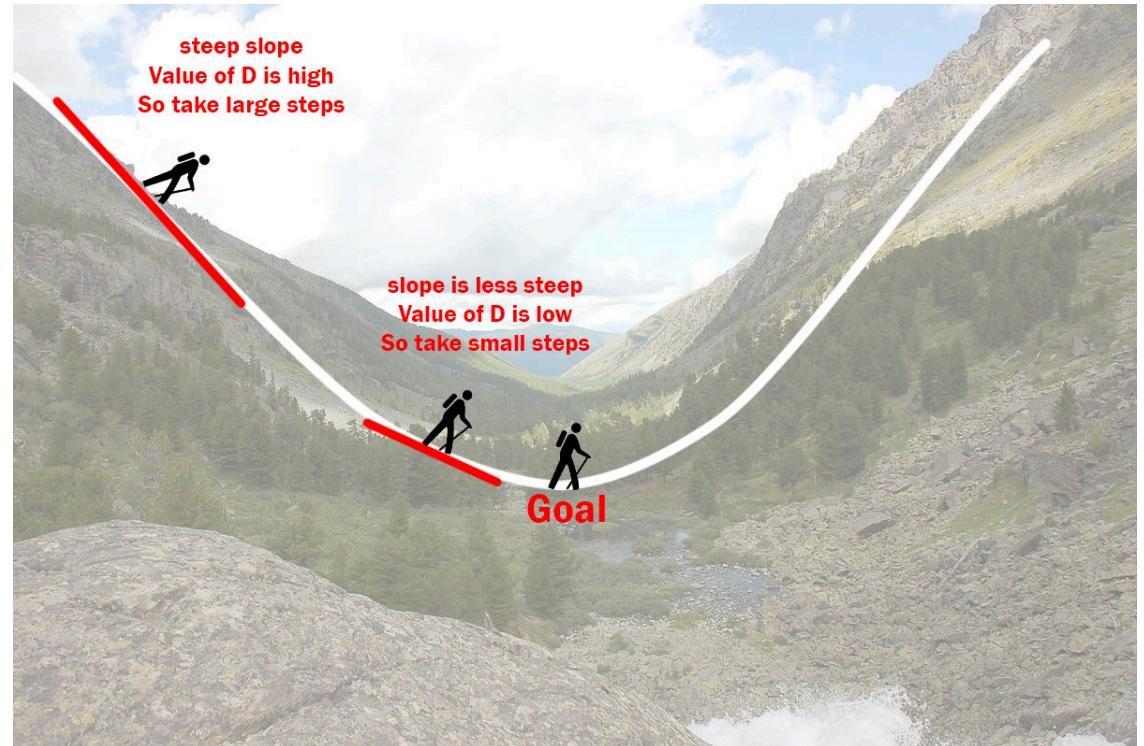
Minimizing functions using gradient descent

What does the derivative of a function tell us?

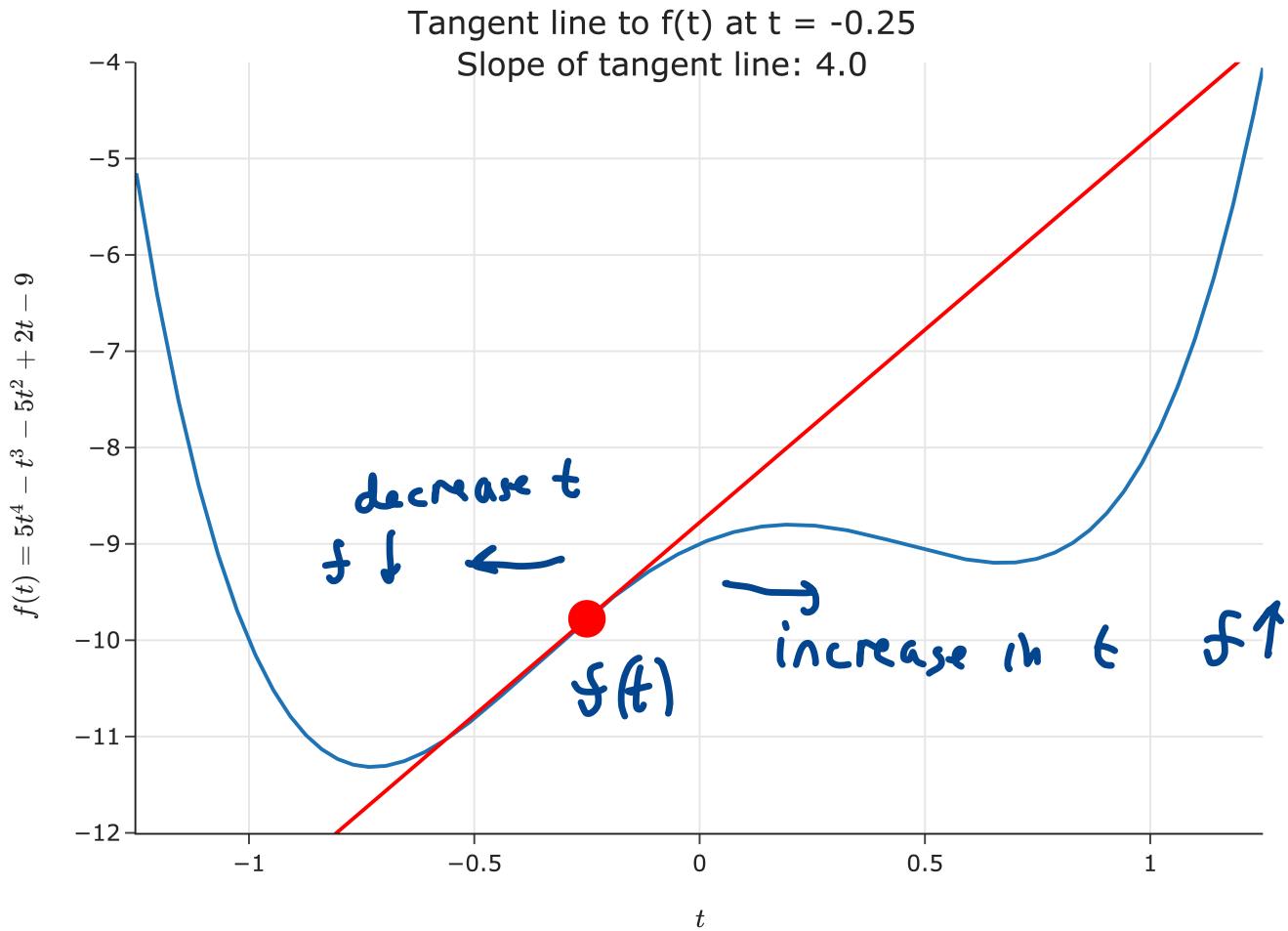
- **Goal:** Given a differentiable function $f(t)$, find the input t^* that minimizes $f(t)$.
- What does $\frac{d}{dt} f(t)$ mean?



Let's go hiking!

- Suppose you're at the top of a mountain and need to get **to the bottom**.
- Further, suppose it's really cloudy A photograph of a mountain valley with a winding path. A red line with a stick figure at the top represents a steep slope, with text overlay: "steep slope Value of D is high So take large steps". A white line with a stick figure at the bottom represents a less steep slope, with text overlay: "slope is less steep Value of D is low So take small steps". The path ends at a red "Goal" marker.

Searching for the minimum

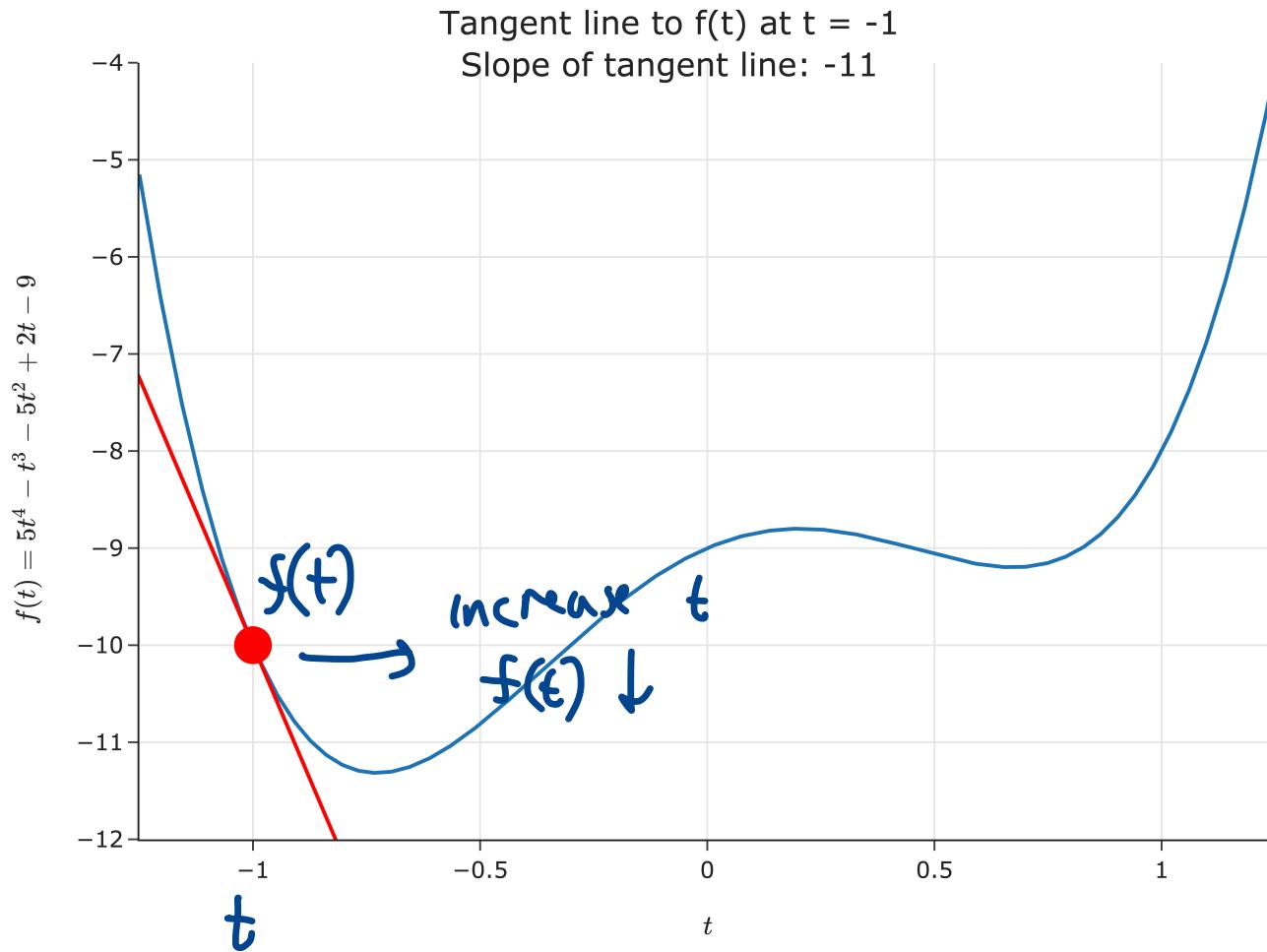


Suppose we're given an initial guess for a value of t that minimizes $f(t)$.

If the **slope of the tangent line at $f(t)$ is positive ↗**:

- Increasing t increases f .
- This means the minimum must be to the **left** of the point $(t, f(t))$.
- Solution: Decrease t ↓.

Searching for the minimum



Suppose we're given an initial guess for a value of t that minimizes $f(t)$.

If the **slope of the tangent line at $f(t)$** is **negative** :

- Increasing t **decreases** f .
- This means the minimum must be to the **right** of the point $(t, f(t))$.
- Solution: **Increase t** .

Gradient descent

To minimize a differentiable function f :

fixed

- Pick a positive number, α . This number is called the **learning rate**, or **step size**.
- Pick an **initial guess**, t_0 . initialization
- Then, repeatedly update your guess using the **update rule**:

$$t_{i+1} = t_i - \alpha \frac{df}{dt}(t_i)$$

step size

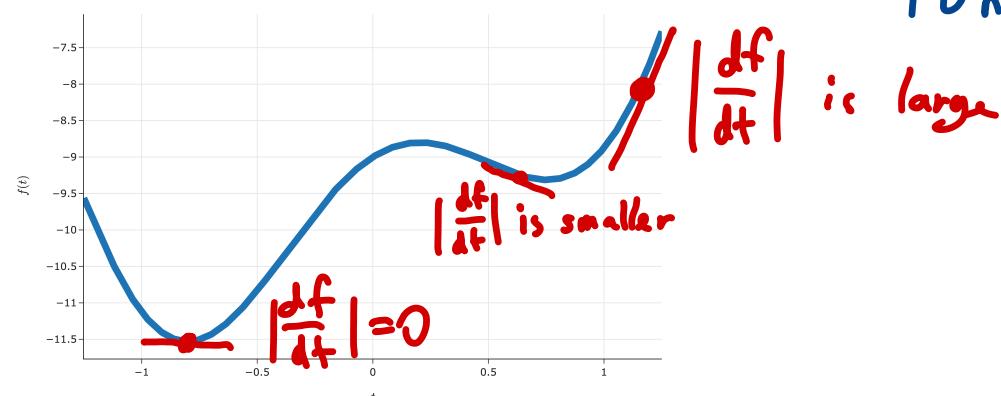
step

α large
big steps
 α small
small steps

$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \dots$

- Repeat this process until **convergence** – that is, when t doesn't change much.

$$|t_{n+1} - t_n| < \epsilon$$



What is gradient descent?

- Gradient descent is a numerical method for finding the input to a function f that minimizes the function.
- Why is it called **gradient** descent?
 - The gradient is the extension of the derivative to functions of multiple variables.
 - We will see how to use gradient descent with multivariate functions next class.
- What is a **numerical** method?
 - A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.

Gradient descent

implementation
of $\frac{df}{dt}$

initialization
(t_0)

step size

Convergence
parameter
 ϵ

```
def gradient_descent(derivative, h, alpha, tol=1e-12):  
    """Minimize using gradient descent."""  
    while True:  
        h_next = h - alpha * derivative(h)  
        if abs(h_next - h) < tol:  
            break  
        h = h_next  
    return h
```

stopping criteria

$$h_{n+1} = h_n - \alpha \frac{df}{dh}(h_n)$$

↑
next position

where we currently are

See [this notebook](#) for a demo!

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in **minimizing empirical risk**.
- Gradient descent is **widely used** in machine learning, to train models from linear regression to neural networks and transformers (including ChatGPT)!

- choose a model
- choose a loss
- Average \rightarrow Empirical risk
- solution: Gradient descent

Lingering questions

Now, we'll explore the following ideas:

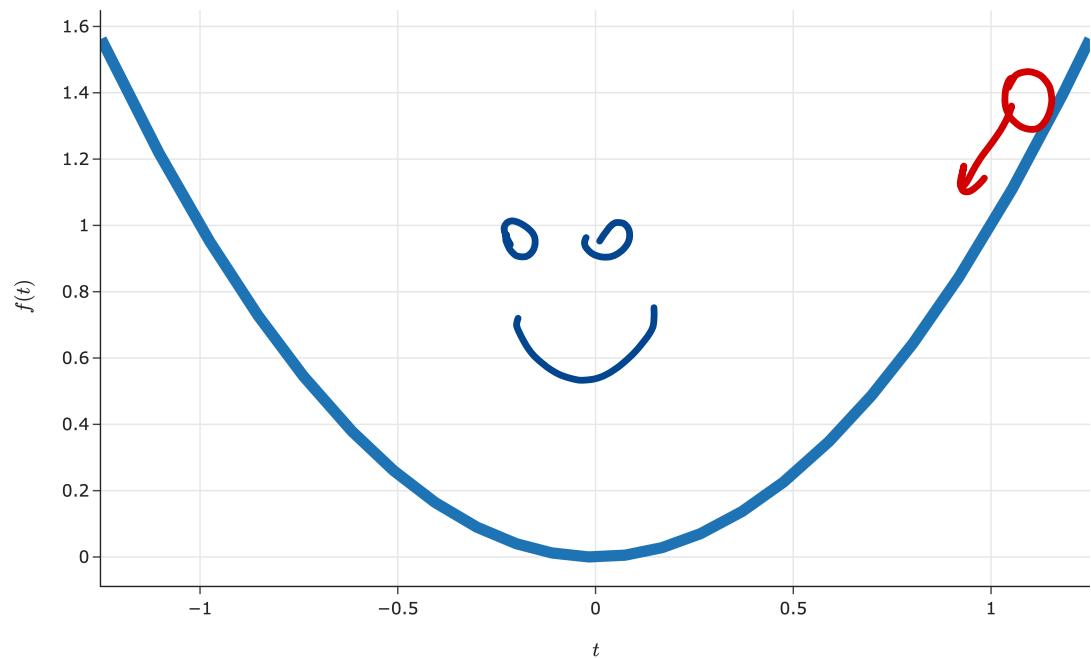
- When is gradient descent *guaranteed* to converge to a global minimum?
 - What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

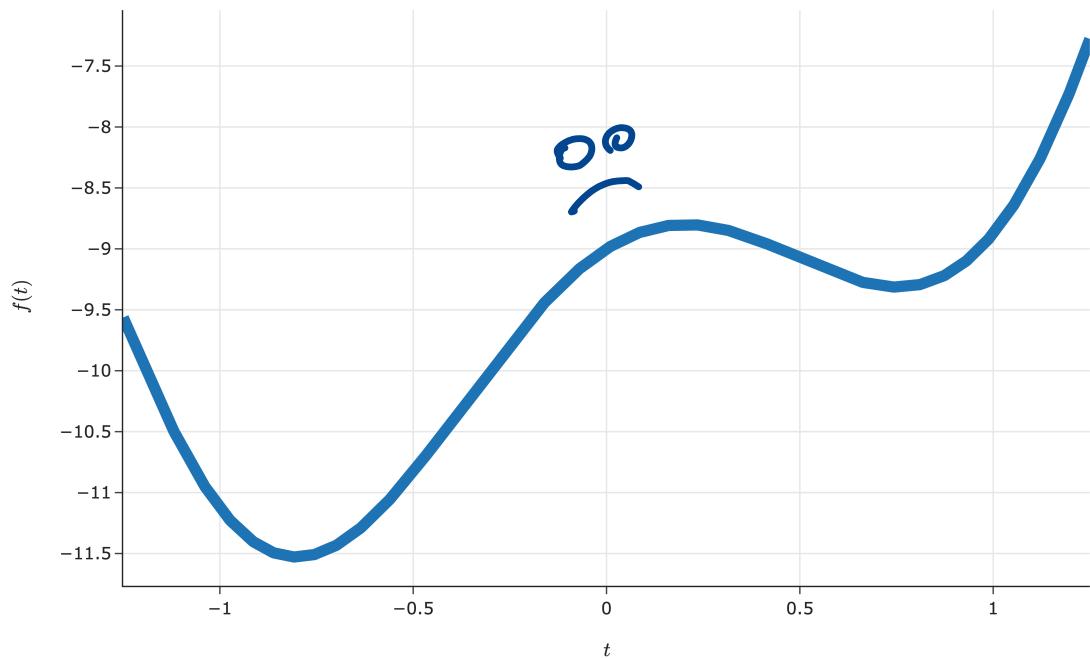
derivative \rightarrow gradient

When is gradient descent guaranteed to work?

Convex functions



A convex function



A non-convex function