

Lectures 15-16

Gradient Descent and Convexity

DSC 40A, Fall 2025

Question 🤔

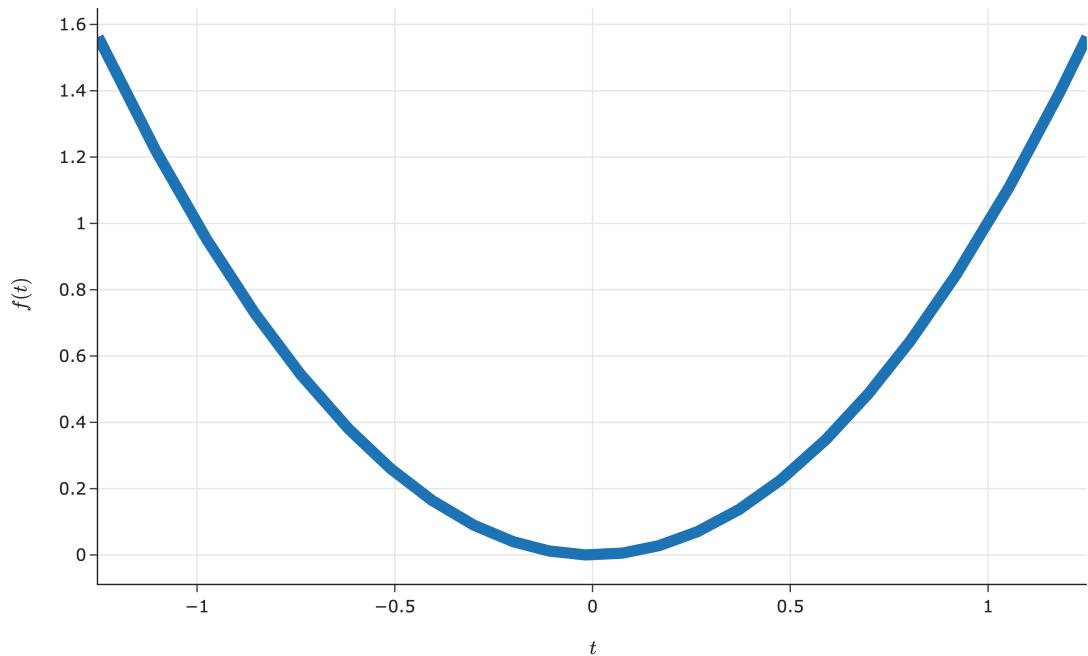
Answer at q.dsc40a.com

Remember, you can always ask questions at [q.dsc40a.com!](https://q.dsc40a.com)

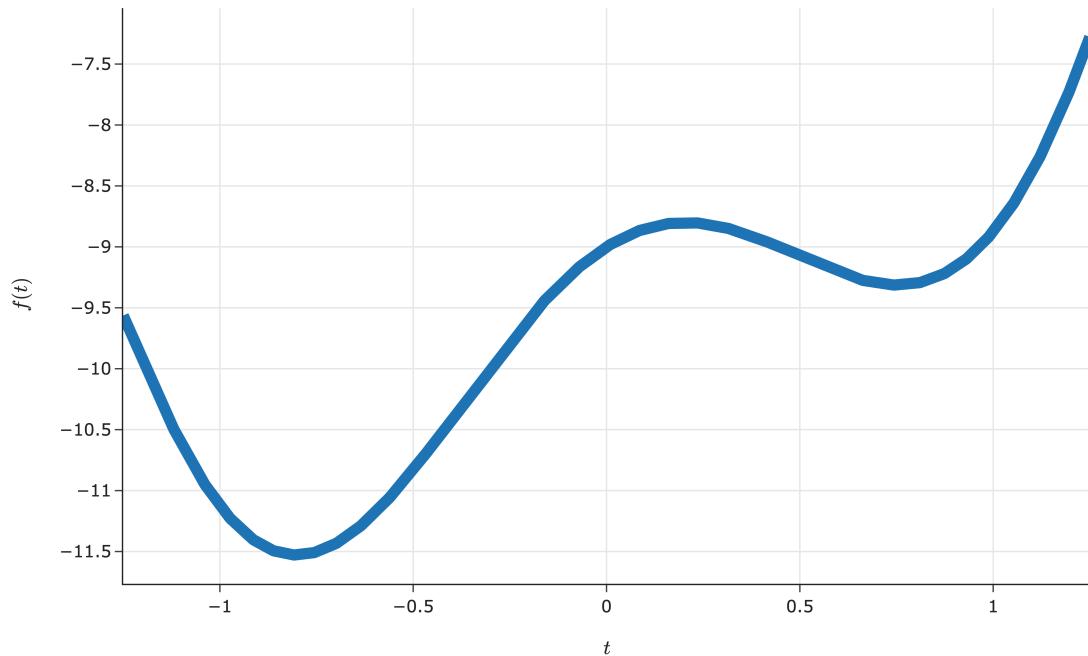
If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

When is gradient descent guaranteed to work?

Convex functions



A convex function



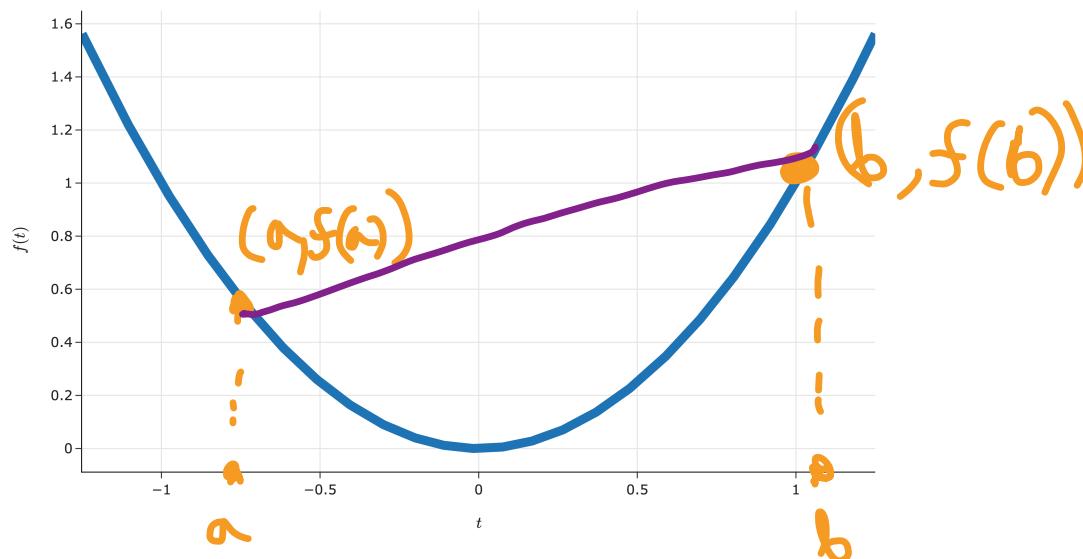
A non-convex function

Convexity

- A function f is **convex** if, for every a, b in the domain of f , the line segment between:

$(a, f(a))$ and $(b, f(b))$

does not go below the plot of f .



A convex function ✓

Question 🤔

Answer at q.dsc40a.com

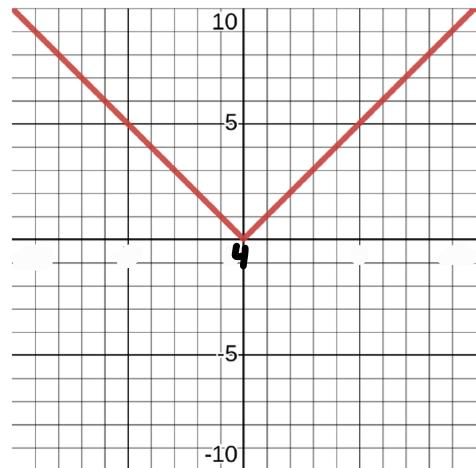
Which of these functions are **not** convex?

- A. $f(x) = |x - 4|$.
- B. $f(x) = e^x$.
- C. $f(x) = \sqrt{x - 1}$.
- D. $f(x) = (x - 3)^{24}$.
- E. More than one of the above are non-convex.

Convex vs. concave

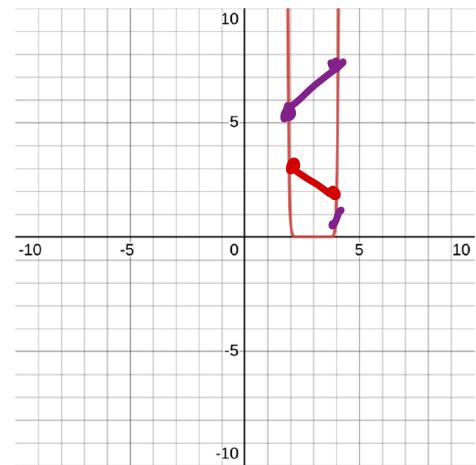
$$|x - 4|$$

Convex
😊

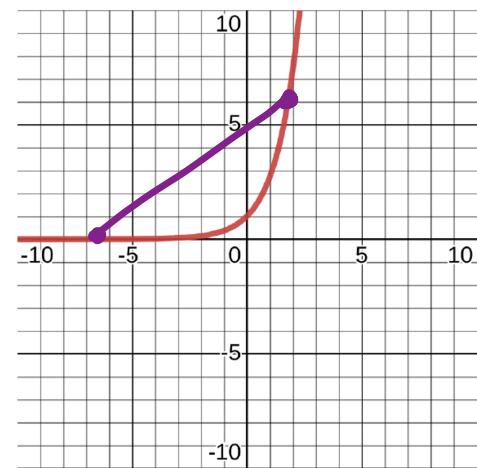


$$f(x) = |x|$$

Convex
😊

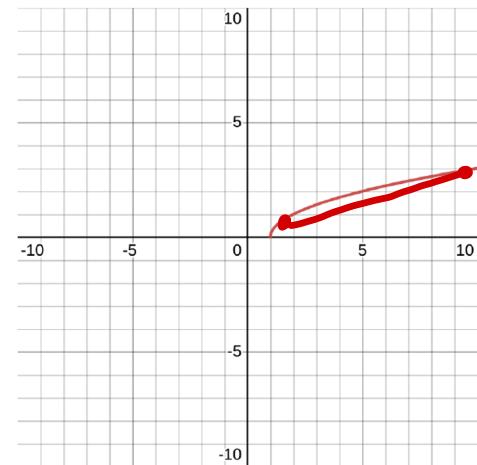


$$f(x) = (x - 3)^{24}$$



$$f(x) = e^x$$

Convex
😊



$$f(x) = \sqrt{x - 1}$$

Concave
😦

Nonconvex functions and gradient descent

- We say a function is **nonconvex** if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) difficult to minimize.
- Gradient descent **might** still work, but it's not guaranteed to find a global minimum.
 - We saw this at the start of the lecture, when trying to minimize
$$f(t) = 5t^4 - t^3 - 5t^2 + 2t - 9.$$

Choosing a step size in practice

- In practice, choosing a step size involves a lot of trial-and-error.
- In this class, we've only touched on "constant" step sizes, i.e. where α is a constant.

$$t_{i+1} = t_i - \alpha \frac{df}{dt}(t_i)$$

- **Remember:** α is the "step size", but the amount that our guess for t changes is $\alpha \frac{df}{dt}(t_i)$, not just α .
- In future courses, you'll learn about "decaying" step sizes, where the value of α decreases as the number of iterations increases.
 - Intuition: take much bigger steps at the start, and smaller steps as you progress, as you're likely getting closer to the minimum.

More examples

$$H(x) = h$$

Example: Huber loss and the constant model

- First, we learned about squared loss,

$$L_{\text{sq}}(y_i, H(x_i)) = (y_i - H(x_i))^2.$$

pro: differentiable, easy to minimize

con: sensitive to outliers

- Then, we learned about absolute loss,

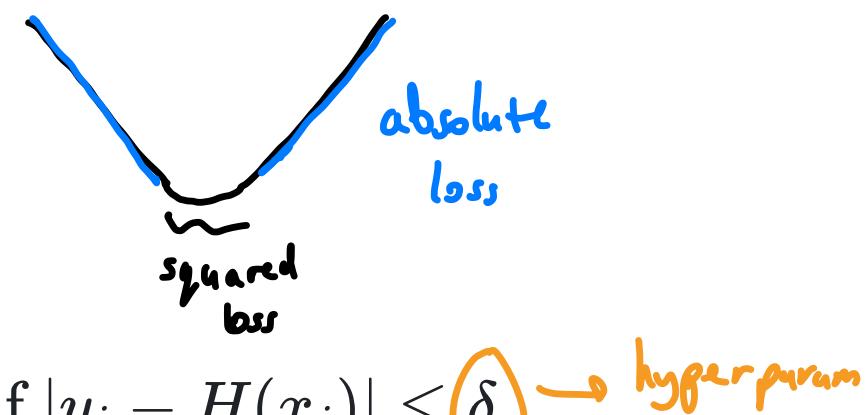
$$L_{\text{abs}}(y_i, H(x_i)) = |y_i - H(x_i)|.$$

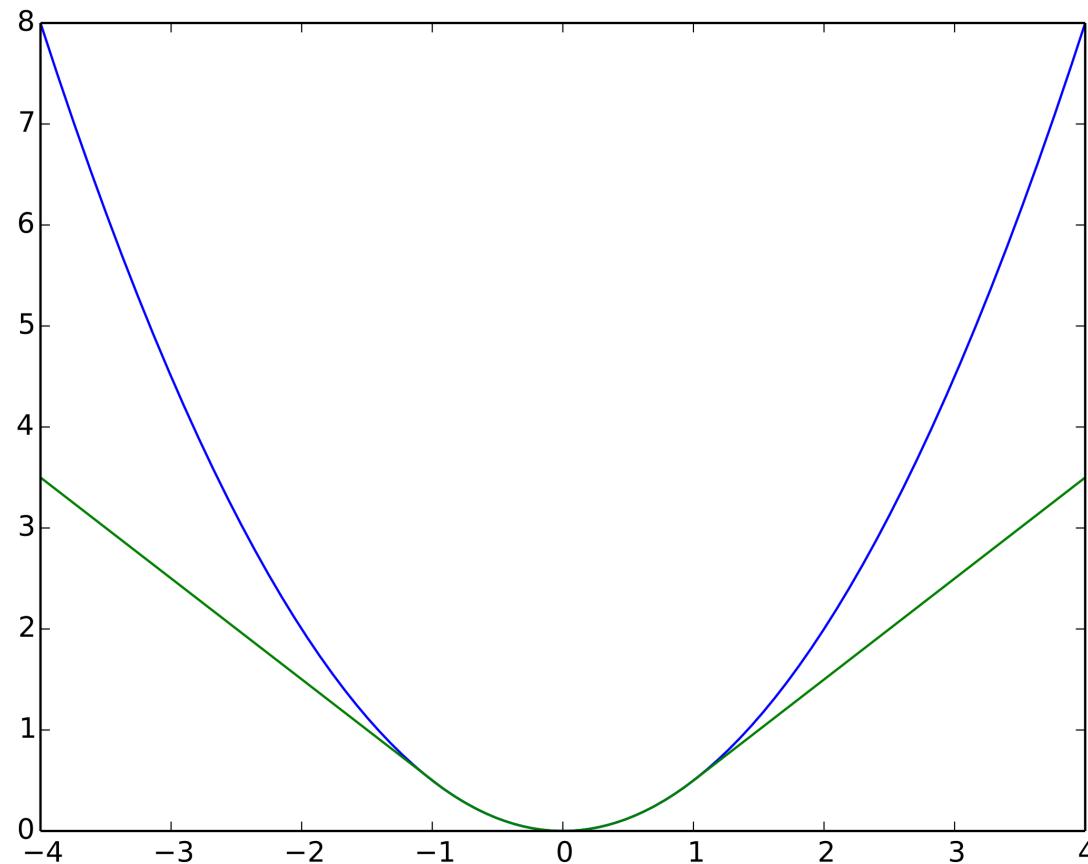
pro: robust to outliers

con: not differentiable

- Let's look at a new loss function, Huber loss:

$$L_{\text{huber}}(y_i, H(x_i)) = \begin{cases} \frac{1}{2}(y_i - H(x_i))^2 & \text{if } |y_i - H(x_i)| \leq \delta \\ \delta \cdot (|y_i - H(x_i)| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$$





Squared loss in blue, Huber loss in green.

Note that both loss functions are convex!

Minimizing average Huber loss for the constant model

- For the constant model, $H(x) = h$:

$$L_{\text{huber}}(y_i, h) = \begin{cases} \frac{1}{2}(y_i - h)^2 & \text{if } |y_i - h| \leq \delta \\ \delta \cdot (|y_i - h| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$$

$$\Rightarrow \frac{\partial L}{\partial h}(h) = \begin{cases} -(y_i - h) & \text{if } |y_i - h| \leq \delta \\ -\delta \cdot \text{sign}(y_i - h) & \text{otherwise} \end{cases}$$

$$\text{sign}(x) = \begin{cases} +1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

- So, the derivative of empirical risk is:

$$\frac{dR_{\text{huber}}}{dh}(h) = \frac{1}{n} \sum_{i=1}^n \begin{cases} -(y_i - h) & \text{if } |y_i - h| \leq \delta \\ -\delta \cdot \text{sign}(y_i - h) & \text{otherwise} \end{cases}$$

- It's impossible to set $\frac{dR_{\text{huber}}}{dh}(h) = 0$ and solve by hand: we need gradient descent!

$$R_{\text{sg}} = \frac{1}{n} \sum_i \ell_{\text{huber}}(y_i, h)$$

Let's try this out in practice! Follow along in [this notebook](#).