Lectures 15-16

Gradient Descent and Convexity

DSC 40A, Fall 2025
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Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.
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Convex functions
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Convexity

e A function f is convex if, for every a, b in the domain of f, the line segment
between:

(@, f(a)) and (b, f(b))

does not go below the plot of f.

A convex function
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Convexity

e A function f is convex if, for every a, b in the domain of f, the line segment
between:
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Formal definition of convexity

e Afunction f: R — R is convex if, for
every a, b in the domain of f, and for every
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e A function is nonconvex if it is not convex.

e This is a formal way of restating the
definition from the previous slide.
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s f(x) = || convex?

* A Yes

e B.No
e C. Maybe

369-= x|
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Example: Prove f(x) = |z| is convex / nonconvex

Reminder: Traingle inequality: |a 4+ 8| < |a| + |3
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T

Answer at q.dsc40a.com

Which of these functions are not convex?

A f(x) = |z — 4.
B. f(z) = e”.
C f(z) =+vVax— 1.

D. f(z) = (z — 3)*.

E. More than one of the above are non-convex.
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Convex vs. concave I -\)
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Concave functions

e A concave function is the negative of a convex function.
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Second derivative test for convexity

e If f(¢) is a function of a single variable and is twice differentiable, then f(t) is
o convex if and only if:
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e Example: f(z) = x* is convex.
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Why does convexity matter?
e Convex functions are (relatively) easy to minimize with gradient descent.

e Theorem: If f(t) is convex and differentiable, then gradient descent converges to a
global minimum of f, as long as the step size is small enough.

e Why?

o Gradient descent converges when the derivative is 0. U

o For convex functions, the derivative is 0 only at one place — the global -
S-k‘o $1 %R
ic oo 1“21-

minimum.

o In other words, if f is convex, gradient descent won't get "stuck" and
terminate in places that aren't global minimums (local minimums, saddle
points, etc.).
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Nonconvex functions and gradient descent
e We say a function is nonconvex if it does not meet the criteria for convexity.

e Nonconvex functions are (relatively) difficult to minimize.

e Gradient descent might still work, but it's not guaranteed to find a global
minimum.

o We saw this at the start of the lecture, when trying to minimize
f(t) = 5t* — 3 — 5t2 + 2t — 0.
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Choosing a step size in practice
e |n practice, choosing a step size involves a lot of trial-and-error.

* |n this class, we've only touched on "constant" step sizes, i.e. where « is a constant.

f
tiv1 = t; —a—
e Remember: a is the "step size", but the amount that our guess for ¢ changes is

ol

a—-(t;), not just o

e |n future courses, you'll learn about "decaying" step sizes, where the value of o
decreases as the number of iterations increases.

o Intuition: take much bigger steps at the start, and smaller steps as you
progress, as you're likely getting closer to the minimum.
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Example: Huber loss and the constant model

e First, we learned about squared loss,
qu(yia H(wZ)) — (yz — H(wz))z
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e Then, we learned about absolute loss,
Labs(yi, H(zi)) = |yi — H(zs)|.
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e Let's look at a new loss function, Huber loss:

3 (yi — H(z:))?
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if |y, — H(x;)| <9

— 36) otherwise
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Squared loss in blue, Huber loss in green.

Note that both loss functions are convex! 9



Minimizing average Huber loss for the constant model

e For the constant model, H(xz) = h:

1 ( ¢ — h) .I ‘ y h/’ < é -

N oL (h) = —(yi — h) if |[y; — h| <6
" Oh’ | —0-sign(y; — h) otherwise/

e So, the derivative of empirical risk is:

dRhuber o 1 O (yz — h) if ‘yz — h’ < )
dh (h) = ;Z{ - sign(y; — h) otherwise

1=1

e It'simpossible to set dRh“bef (h) = 0 and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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