

DSC 40A

Theoretical Foundations of Data Science I

Foundations of Probability – Conditional Probability

Announcements

- Homework 5 released today
- Midterm grade report will be released today.

Agenda

- Multiplication rules and independence
- Conditional probability

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](http://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Multiplication rule and Independence

- The probability that events A and B both happen is

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B|A)$$

- $\mathbb{P}(B|A)$ means "the probability that B happens, given that A happened." It is a **conditional probability**.
 - More on this soon!
- If $\mathbb{P}(B|A) = \mathbb{P}(B)$, we say A and B are **independent**.
 - Intuitively, A and B are independent if knowing that A happened gives you no additional information about event B , and vice versa.
 - For two independent events, $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Practice Problems

Example 2. A die is rolled 3 times. What is the probability that the face 1 never appears in any of the rolls?

Practice Problems

Example 3. A die is rolled n times. What is the chance that only faces 2, 4 or 6 appear?

Practice Problems

Example 4. A die is rolled two times. What is the probability that the two rolls had different faces?

Conditional probabilities

Probability of an event may **change** if have additional information about outcomes.

Conditional probabilities

Probability of an event may **change** if have additional information about outcomes.

Suppose E and F are events, and $P(F) > 0$. Then,

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

i.e.,

$$P(E \cap F) = P(E|F)P(F)$$

Conditional probabilities

Are these probabilities equal?

Suppose a family has two pets. Assume that it is **equally likely** that each pet is a dog or a cat. Consider the following two probabilities:

- The probability that both pets are dogs given that **the oldest is a dog**.
- The probability that both pets are dogs given that **at least one of them is a dog**.

What do you think?

- A. they are equal
- B. they are not equal

Conditional probabilities

Are these probabilities equal?

Suppose a family has two pets. Assume that it is **equally likely** that each pet is a dog or a cat. Consider the following two probabilities:

- The probability that both pets are dogs given that **the oldest is a dog**.
- The probability that both pets are dogs given that **at least one of them is a dog**.

Conditional probabilities

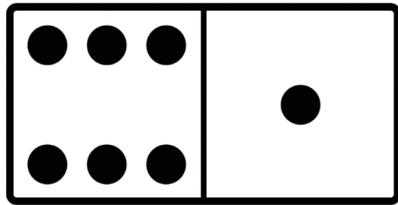
Are these probabilities equal?

Suppose a family has two pets. Assume that it is **equally likely** that each pet is a dog or a cat. Consider the following two probabilities:

- The probability that both pets are dogs given that **the oldest is a dog**.
- The probability that both pets are dogs given that **at least one of them is a dog**.

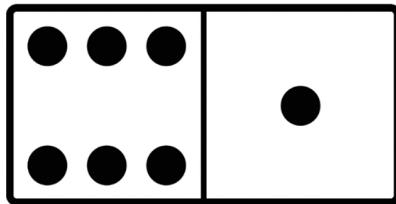
Dominoes

In a set of dominos, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.



Dominoes

In a set of dominos, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.



Question 1: What is the probability of drawing a “double” from a set of dominos — that is, a tile with the same number on both sides?

Question 2: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What’s the probability that this tile is a double, with six on both sides?

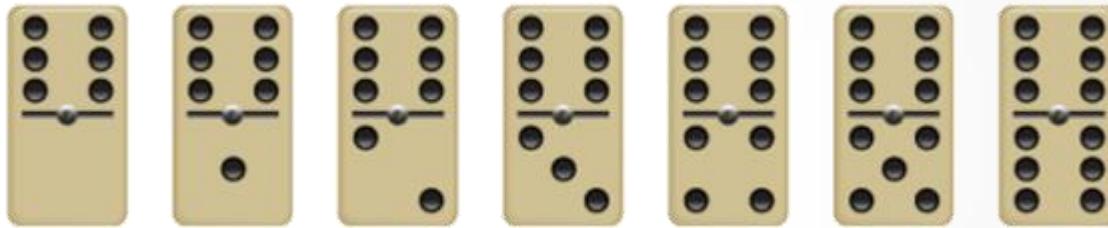
Question 3: Now your friend picks a random tile from the set and looks at it. You ask if they have a six, and they answer yes. What is the probability that your friend’s tile is a double, with six on both sides?

Dominoes

Question 1: What is the probability of drawing a “double” from a set of dominoes — that is, a tile with the same number on both sides?

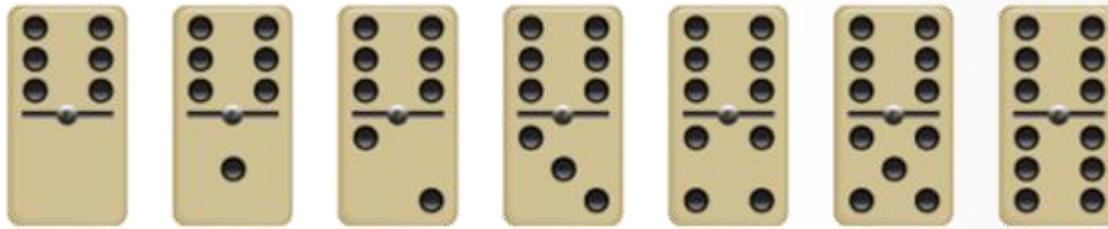
Dominoes

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6. What is the probability that your friend's tile is a double, with 6 on both sides?



Dominoes

Question 3: Now you pick a random tile from the set and uncover only one side, revealing that it has 6 dots. What is the probability that this tile is a double, with 6 on both sides?



Conditional probabilities: Simpson's Paradox

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Which treatment is better?

- A. Treatment A for all cases.
- B. Treatment B for all cases.
- C. A for small and B for large.
- D. A for large and B for small.

Conditional probabilities: Simpson's Paradox

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox

"When the less effective treatment is applied more frequently to easier cases, it can appear to be a more effective treatment."

Summary

- Today, we studied conditional probability.
- **Next time:** How do we use probability to answer questions about random samples?