

DSC 40A

Theoretical Foundations of Data Science I

Foundations of Probability – Conditional Probability

Announcements

- Homework 5 released today
- Midterm grade report will be released today.

Agenda

- Multiplication rules and independence
- Conditional probability

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Multiplication rule and Independence

- The probability that events A and B both happen is

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B|A)$$

- $\mathbb{P}(B|A)$ means "the probability that B happens, given that A happened." It is a **conditional probability**.
 - More on this soon!
- If $\mathbb{P}(B|A) = \mathbb{P}(B)$, we say A and B are **independent**.
 - Intuitively, A and B are independent if knowing that A happened gives you no additional information about event B , and vice versa.
 - For two independent events, $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Practice Problems

Example 2. A die is rolled 3 times. What is the probability that the face 1 never appears in any of the rolls?

$$S = \{\text{all trios of rolls}\}$$

$$\text{Ex: } 123 \quad 656 \quad 425$$

$$E = \{1 \text{ did not appear in any roll}\}$$

$$P\{\text{not rolling 1}\} = 1 - \frac{1}{6} = \frac{5}{6} \quad \text{complement rule}$$

rolls are independent

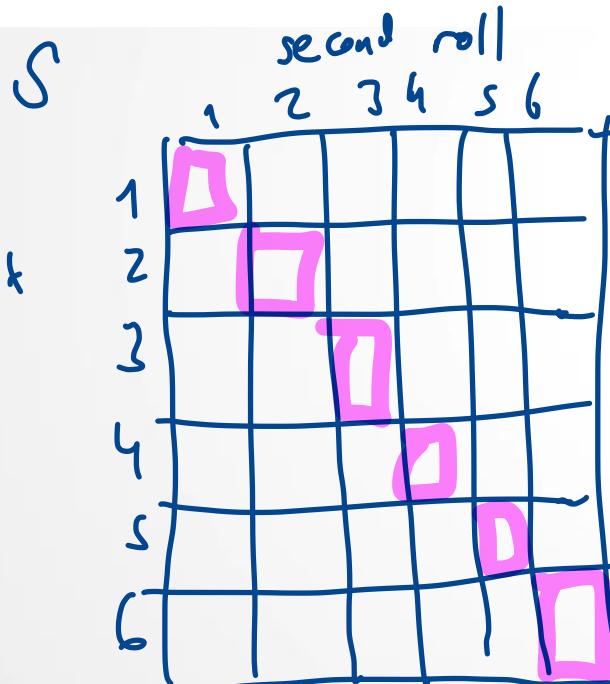
$$P\{1 \text{ not in any roll}\} = P\left(\begin{smallmatrix} 1 \text{ not} \\ \text{in roll 1} \end{smallmatrix}\right) \cdot P\left(\begin{smallmatrix} 1 \text{ not} \\ \text{in roll 2} \end{smallmatrix}\right) \cdot P\left(\begin{smallmatrix} 1 \text{ not} \\ \text{in roll 3} \end{smallmatrix}\right) = \left(\frac{5}{6}\right)^3$$

$$P(A \text{ and } B \text{ and } C) = P(A) P(B|A) \cdot P(C|B \text{ and } A) = P(A) P(B) P(C)$$

Practice Problems

Example 3. A die is rolled n times. What is the chance that only faces 2, 4 or 6 appear?

$$S \text{ for single roll} = \{1, 2, 3, 4, 5, 6\}$$


$$E = \{2, 4, 6\}$$

$$P(E) = \frac{3}{6} = \frac{1}{2}$$

Rolls are independent : $\underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2}}_{n \text{ times}} = \left(\frac{1}{2}\right)^n$

Practice Problems

Example 4. A die is rolled two times. What is the probability that the two rolls had different faces?

Solution 1

$$E = \{\text{two different faces}\}$$

$$\bar{E} = \{\text{both rolls had same face}\}$$

$$= \{11, 22, 33, 44, 55, 66\}$$

complement

$$P(E) = 1 - P(\bar{E}) =$$

$$1 - \frac{6}{36} = \frac{5}{6}$$

Solution 2

$$S = \{\text{second roll}\}$$

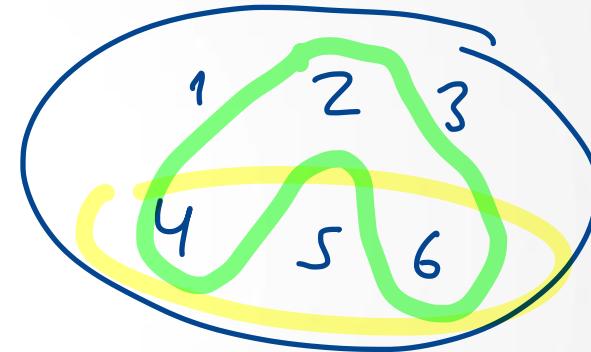
$$= \{1, 2, 3, 4, 5, 6\}$$

$$E = \{\text{second roll is different from first}\}$$

$$P(E) = \frac{5}{6}$$

Conditional probabilities

Probability of an event may **change** if have additional information about outcomes.


Rolling a die

What is the probability of
rolling a number > 3 ?

$$E = \{4, 5, 6\}$$

$$P(E) = \sum_{s \in E} p(s) = \sum_{s \in \{4, 5, 6\}} \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$$

$S =$

$$P(E | F) = ? = P(E)$$

Extra info: result was even

$$F = \{2, 4, 6\}$$

Conditional probabilities

Probability of an event may **change** if have additional information about outcomes.

Suppose E and F are events, and $P(F) > 0$. Then,

$$E = \{4, 5, 6\}$$

$$F = \{2, 4, 6\}$$

$$P(F) = \frac{\#F}{\#S} = \frac{3}{6} = \frac{1}{2}$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

$$P(E|F) = P(E)$$

i.e.,

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \left(\frac{\# \text{ of outcomes in } E \text{ and } F}{\# \text{ of outcomes in } S} \right) \cdot \frac{1}{P(F)} = \frac{\frac{2}{6}}{\frac{1}{2}} = \frac{4}{6} = \frac{2}{3} > \frac{1}{2}$$

$P(E \cap F) = P(E|F)P(F)$

Conditional probabilities

Are these probabilities equal?

Suppose a family has two pets. Assume that it is **equally likely** that each pet is a dog or a cat. Consider the following two probabilities:

- The probability that both pets are dogs given that **the oldest is a dog**.
- The probability that both pets are dogs given that **at least one of them is a dog**.

What do you think?

A. they are equal 70 %

B. they are not equal 30 %

Conditional probabilities

Are these probabilities equal?

Suppose a family has two pets. Assume that it is **equally likely** that each pet is a dog or a cat. Consider the following two probabilities:

- The probability that both pets are dogs given that **the oldest is a dog**.
- The probability that both pets are dogs given that **at least one of them is a dog**.

$$S = \{\text{dd, cc, dc, cd}\}$$
$$\begin{matrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{matrix}$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(E)}{P(F)} =$$

$E \subset F$

$$E = \{\text{dd}\}$$

$E \subset F$

$$P(E) = \frac{1}{4}$$

$$F = \{\text{dd, dc}\}$$
$$P(F) = \frac{2}{4} = \frac{1}{2} > 0$$

$$= \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{2}{4} = \frac{1}{2}$$

Conditional probabilities

Are these probabilities equal?

Suppose a family has two pets. Assume that it is **equally likely** that each pet is a dog or a cat. Consider the following two probabilities:

- The probability that both pets are dogs given that **the oldest is a dog**.
- The probability that **both pets are dogs** given that **at least one of them is a dog**.

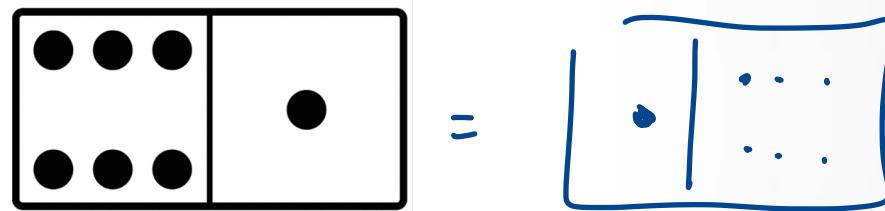
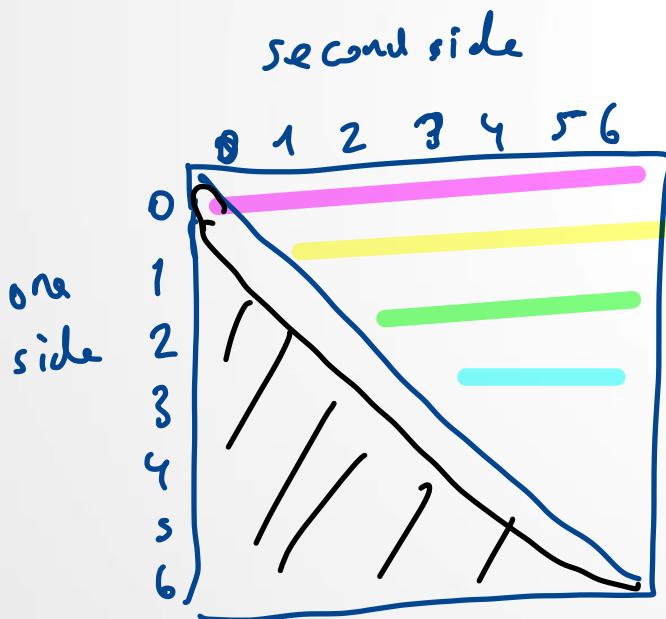
$$S = \{dd, cc, dc, cd\}$$

$$E = \{dd\}$$

$$P(E) = \frac{1}{4}$$

$$F = \{dd, dc, cd\}$$

$$P(F) = \frac{3}{4} > 0$$

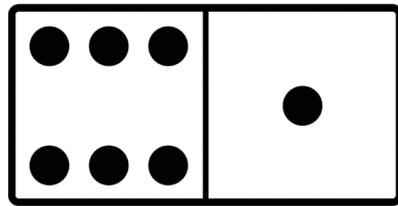


$$E \subset F \Rightarrow E \cap F = E$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(E)}{P(F)}$$

$$= \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3} < \frac{1}{2}$$

Dominoes

In a set of dominos, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.



$$7 + 6 + 5 + 7 + 3 + 2 + 1 = 28$$

tiles

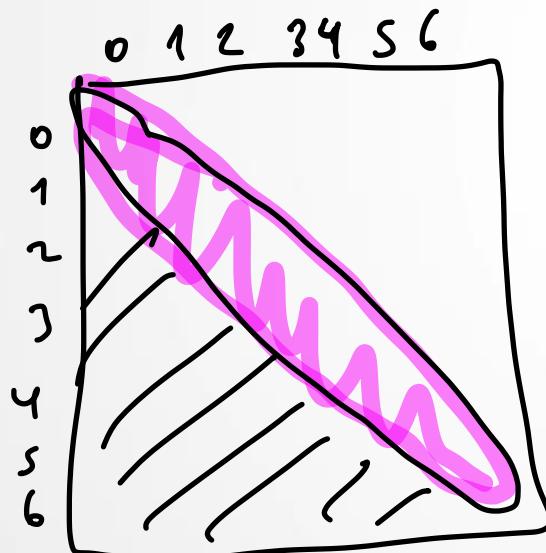
Dominoes

In a set of dominos, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Question 1: What is the probability of drawing a “double” from a set of dominos — that is, a tile with the same number on both sides?

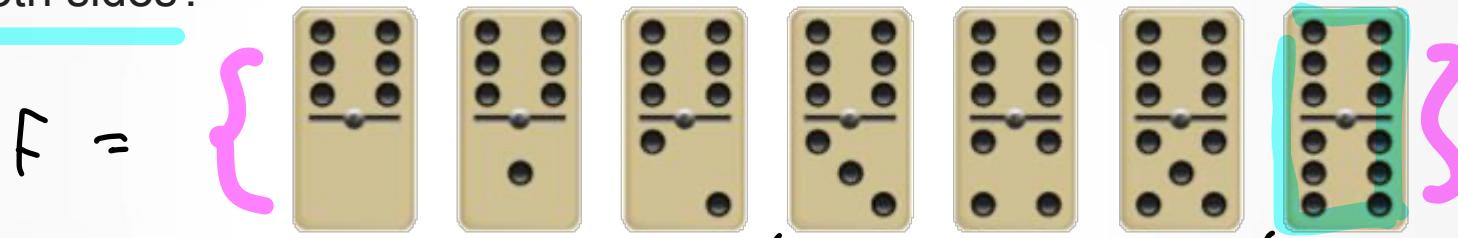
Question 2: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What’s the probability that this tile is a double, with six on both sides?

Question 3: Now your friend picks a random tile from the set and looks at it. You ask if they have a six, and they answer yes. What is the probability that your friend’s tile is a double, with six on both sides?


Dominoes

Question 1: What is the probability of drawing a “double” from a set of dominoes — that is, a tile with the same number on both sides?

$$S = \{\text{all 21 tiles}\}$$


$$E = \{00, 11, 22, 33, 44, 55, 66\}$$

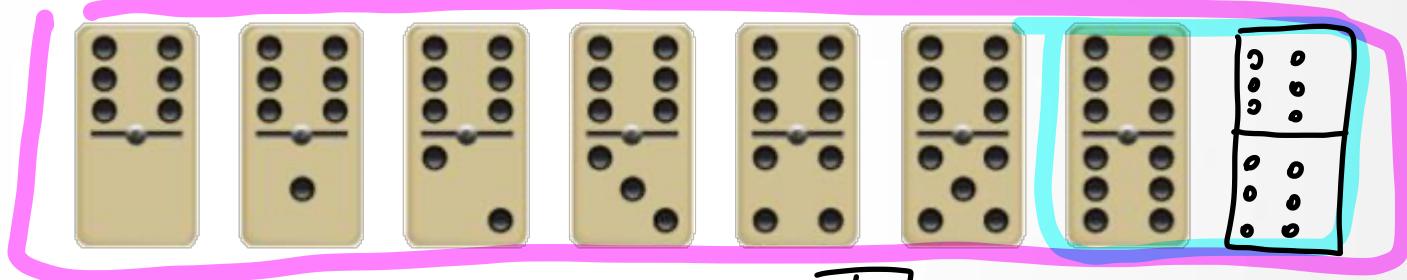
$$P(E) = \frac{\# \text{ outcomes in } E}{\# \text{ outcomes in } S} = \frac{7}{28} = \frac{1}{4}$$

Dominoes

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6. What is the probability that your friend's tile is a double, with 6 on both sides?

$$S = \{\text{all 28 tiles}\}$$

$$E = \{66\}$$


$$P(F) = \frac{\#\text{ outcomes in } F}{\#\text{ outcomes in } S} = \frac{7}{28}$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(E)}{P(F)} \stackrel{E \subset F}{=} \frac{\frac{1}{28}}{\frac{7}{28}} = \frac{1}{7}$$

$$P(E \cap F) = P(E) = \frac{1}{28}$$

Dominoes

Question 3: Now you pick a random tile from the set and uncover only one side, revealing that it has 6 dots. What is the probability that this tile is a double, with 6 on both sides?

$$S = 28 \cdot 2 \text{ possible domino layout} = 56$$

$$\Rightarrow \text{both sides are the same } \begin{array}{|c|c|} \hline 1 & 1 \\ \hline 1 & 1 \\ \hline \end{array} \quad 7 \cdot 2 = 14$$

$$E = \text{both sides are the same with six on both sides} = 2$$

$$F = \text{layout with 6 on one side} = 8 \text{ outcomes}$$

$$\begin{aligned} P(E|F) &= \\ &= \frac{P(E \cap F)}{P(F)} = \frac{2/56}{8/56} \\ &= 1/4 > 1/7 \end{aligned}$$

Dominoes

Question 3: Now you pick a random tile from the set and uncover only one side, revealing that it has 6 dots. What is the probability that this tile is a double, with 6 on both sides?

Try it out in [code](#)!