

DSC 40A

Theoretical Foundations of Data Science I

Random Sampling

Agenda

- Conditional probability continued
- Sampling with and without replacement

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Conditional probability continued

Dominoes

Question 3: Now you pick a random tile from the set and uncover only one side, revealing that it has 6 dots. What is the probability that this tile is a double, with 6 on both sides?

Try it out in [code!](#)

Conditional probabilities: Simpson's Paradox

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Which treatment is better?

- A. Treatment A for all cases.
- B. Treatment B for all cases.
- C. A for small and B for large.
- D. A for large and B for small.

Conditional probabilities: Simpson's Paradox

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox

"When the less effective treatment is applied more frequently to easier cases, it can appear to be a more effective treatment."

Random Sampling

Sampling

Sampling with replacement:

1. Draw one element *uniformly at random* from list.
2. Return the element to the list.
3. Repeat

Sampling without replacement:

What does *uniformly at random* mean?

Sampling

Sampling with or without replacement:

- All samples are equally likely.
- Uniform distribution!

$P(\text{sample having a certain property}) =$

Sampling

Sampling with or without replacement:

- All samples are equally likely.
- Uniform distribution!

$$P(\text{sample having a certain property}) = \frac{\# \text{ samples having property}}{\# \text{ possible samples}}$$

Practice Problems

Example 5. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **with replacement**. What is the chance that a particular student is among the 5 selected students?

Practice Problems

Part 1. Denominator. If you draw a sample of size 5 at random with replacement from a population of size 20, how many different sequences of individuals could you draw?

Practice Problems

Part 2. Numerator. If you draw a sample of size 5 at random with replacement from a population of size 20, how many different sequences of individuals include a particular person?

Practice Problems

Using the complement. If you draw a sample of size 5 at random with replacement from a population of size 20, how many different sequences of individuals **do not** include a particular person?

Practice Problems

Example 5. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **with replacement**. What is the chance that a particular student is among the 5 selected students?

Practice Problems

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Which probability will be higher?

- A. Probability of including a particular student when sampling with replacement.
- B. Probability of including a particular student when sampling without replacement.
- C. Both probabilities are the same.

Practice Problems

Part 1. Denominator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sequences of individuals could you draw?

Practice Problems

Part 2. Numerator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sequences of individuals include a particular person?

Practice Problems

Using the complement. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sequences of individuals **do not** include a particular person?

Practice Problems

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Summary

- When we sample uniformly, whether with or without replacement, each possible sample is equally likely.
- Probability questions become counting questions:

$$P(\text{sample having a certain property}) = \frac{\# \text{ samples having property}}{\# \text{ possible samples}}$$

- **Next time:** combinatorics, or counting principles