

DSC 40A

Theoretical Foundations of Data Science I

Lecture 20-21: Combinatorics

Agenda

- How do we count the number of outcomes, besides enumerating them all?
 - How many outcomes are possible if a die is rolled 100 times?
 - How many different ways are there to shuffle 52 cards?
 - How many ways are there to choose a jury of 12 people from a panel of 100?
- Many probability questions can be solved by counting, or combinatorics.
- We'll learn how to count sequences and sets.

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Combinatorics

Sequences vs. Sets

Sequences <i>list, tuple</i>	Sets <i>collection of elements</i>
Order matters	Order does not matter
Repetitions allowed (with replacement)	No repetitions allowed (without replacement)
Elements listed in order	Elements listed in no particular order within curly braces
Ex: $2, 4, 5 \neq 4, 2, 5$	Ex: $\{2, 4, 5\} = \{4, 2, 5\}$
Ex: $2, 2, 2 \neq 2, 2$	Ex: $\{2, 2, 2\} = \{2, 2\} = \{2\}$
Ex: $1, 3, 4 = 1, 3, 4$	Ex: $\{1, 3, 4\} = \{1, 3, 4\}$

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: $1, 3, 4 = 1, 3, 4$

Example 1: *sampling w/ replacement*
draw a card, put it back, repeat four more times

$(A\heartsuit, 2\clubsuit, 6\spades, A\heartsuit, 3\diamondsuit)$

$\neq (2\clubsuit, 6\clubsuit, A\heartsuit, 3\heartsuit, A\heartsuit)$

Example 2:
flip a coin 100 times

$(H, T, T, H, \dots, H, T, T, T)$

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: $1, 3, 4 = 1, 3, 4$

A UCSD PID starts with "A" then has 8 digits.
How many UCSD PIDs are possible?

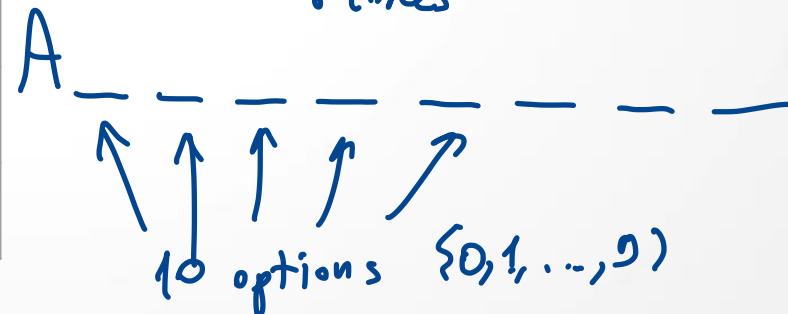
5%. A. 8^{10}

28%. C. $8!$

76%. B. 10^8

51%. D.

$$\underbrace{10 \cdot 10 \cdot 10 \cdot \dots \cdot 10}_{8 \text{ times}} = 10^8$$



Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: $1, 3, 4 = 1, 3, 4$

A UCSD PID starts with “A” then has 8 digits.
How many UCSD PIDs are possible?

- A. 8^{10}
- C. $8!$
- B. 10^8
- D.

P is the population you can draw from and
 $n = |P|$ is the size of that population (number
of elements). *with replacement*
How many sequences of length k are
there?

$$\underbrace{|P| \cdot |P| \cdots |P|}_{k \text{ times}} = |P|^k = n^k$$

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: $1, 3, 4 = 1, 3, 4$

Exponential growth
Flip a coin n times

n	# of Sequences of Length n
5	$2^5 = 32$
10	$2^{10} = 1024$
15	$2^{15} = 32,758$
20	$2^{15} \approx 1 \text{ million}$
50	$2^{50} \approx \# \text{ of grains of sand on Earth}$

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: $1, 3, 4 = 1, 3, 4$

How many ways to select a president, vice president, and secretary from a group of 8 people? *Nobody can serve in more than one*

role. \Rightarrow sampling without replacement

$\frac{5}{P} \cdot \frac{2}{Vp} \cdot \frac{7}{S}$

$n=8$
 $k=3$

$8 \cdot 7 \cdot 6$

$\frac{5}{P} \geq \frac{2}{S} \neq \frac{7}{P} \geq \frac{5}{S}$

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: $1, 3, 4 = 1, 3, 4$

How many ways to select a president, vice president, and secretary from a group of 8 people?

$n = 8$ (# elements to choose from)

$k = 3$ (# distinct elements to choose)

$$P(8, 3) = 8 \cdot 7 \cdot 6$$

$$P(n, k) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Sequences where repetitions are not allowed are Permutations.

Sets

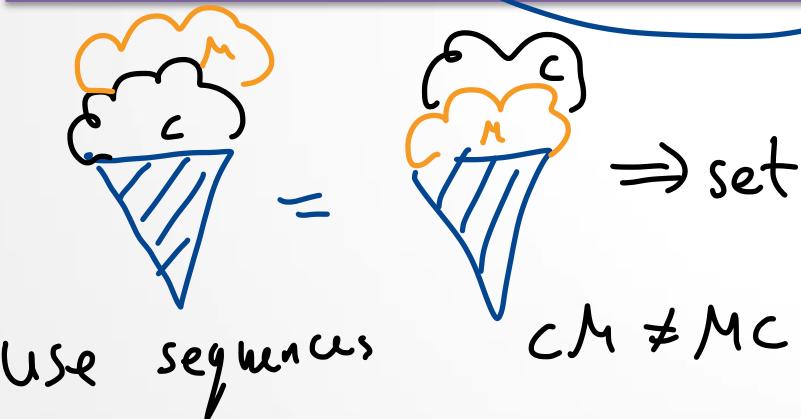
There are 24 ice cream flavors. How many ways can you pick 2 different flavors?

A. 24

#_3 B. $24 \cdot 23$

C. $24 \cdot 24$

D. $12 \cdot 23$



$$\# \text{ sequences} = 2^4 \cdot 23$$

$$\# \text{ sets} = \frac{\# \text{ sequences}}{\# \text{ orderings}} = \frac{2^4 \cdot 23}{2} = 12 \cdot 23 \Rightarrow \# \text{ seqs} = \# \text{ sets} \cdot \# \text{ orderings}$$

Sets

Order does not matter

No repetitions allowed

Elements listed in no particular order within curly braces

Ex: $\{2, 4, 5\} = \{4, 2, 5\}$

Ex: $\{2, 2, 2\} = \{2, 2\} = \{2\}$

Ex: $\{1, 3, 4\} = \{1, 3, 4\}$

Sets

How many ways to select a committee of 3 from a group of 8?

$$\# \text{ sets} = \frac{\# \text{ sequences}}{\# \text{ orderings}} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 8 \cdot 7 = 56$$

$n = 8$ # elements to choose from

$k = 3$ # elements to select

$$C(8,3) = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = \frac{8! / 5!}{3!} = \frac{8!}{5! 3!}$$

$$C(n,k) = \frac{P(n,k)}{k!} = \frac{n! / (n-k)!}{k!} = \frac{n!}{(n-k)! k!}$$

Sets

Order does not matter

No repetitions allowed

Elements listed in no particular order within curly braces

Ex: $\{2, 4, 5\} = \{4, 2, 5\}$

Ex: $\{2, 2, 2\} = \{2, 2\} = \{2\}$

Ex: $\{1, 3, 4\} = \{1, 3, 4\}$

$C = \text{combinations}$

Permutations vs. Combinations

Permutations	Combinations
Order matters	Order does not matter
No repetitions allowed (without replacement)	No repetitions allowed (without replacement)
Counts the number of sequences of k distinct elements chosen from n possible elements	Counts the number of sets of size k chosen from n possible elements
$P(n, k) = (n)(n - 1) \dots (n - k + 1) = \frac{n!}{(n - k)!}$	<i>“n choose k”</i> $C(n, k) = \binom{n}{k} = \frac{n!}{k!(n - k)!}$
How many ways to select a president, vice president, and secretary from a group of 8 people? $P(8,3)$	How many ways to select a committee of 3 from a group of 8? $C(8,3)$

Permutations vs. Combinations

Permutations

Order matters

No repetitions allowed (without replacement)

Counts the number of **sequences of k distinct elements** chosen from n possible elements

$$P(n, k) = (n)(n - 1) \dots (n - k + 1) = \frac{n!}{(n - k)!}$$

How many ways to select a president, vice president, and secretary from a group of 8 people?

$$P(8, 3)$$

Example 1:

draw a card, **don't** put it back, repeat four more times

(A♥, 2♣, 6♠, 7♥, 3♦)

Example 2:

rank 2 best cities to live in out of list of 10

SD, LA

Permutations vs. Combinations

Combinations

Order does not matter

No repetitions allowed (without replacement)

Counts the number of **sets of size k** chosen from n possible elements

$$C(n, k) = \binom{n}{k} = \frac{n!}{k!(n - k)!}$$

How many ways to select a committee of 3 from a group of 8?

$$C(8, 3)$$

Example 1:

draw a hand of 5 cards from a deck of 52

{A♥, 2♣, 6♠, 7♥, 3♦}

Example 2:

Select 5 student from the class

Owen Luis
Leah Nayyan Dilhan

Sampling Without Replacement

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

Monday was sequences

Today using sets!

S = sets of length 5 chosen from 20 students

selected student = 17

$$\text{Prob} \left(\begin{array}{l} \text{\#17 is included} \\ \text{in set of 5} \\ \text{selected students} \end{array} \right) = \frac{\text{\# sets including 17}}{\text{\# sets of 5 out of 20}}$$

Sampling Without Replacement

Part 1. Denominator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals could you draw?

sets of 5 out of 20

$$C(20, 5) = \binom{20}{5}$$

Sampling Without Replacement

Part 2. Numerator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals include a particular person?

sets with 5 students including 17

key: choosing 4 students out of 19

$$= C(19, 4) = \binom{19}{4}$$

Sampling Without Replacement

Using the complement. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals **do not** include a particular person?

sets of 5 students out of 20 not including 17

chosen from 19 students

$$= C(19, 5)$$

Sampling Without Replacement

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students? $P(A) = 1 - P(\bar{A})$

$$\begin{aligned} P(\text{set of 5 students includes 17}) &= \frac{\#\text{sets incl. 17}}{\#\text{sets}} \quad \text{using complement} \\ &= \frac{C(19, 4)}{C(20, 5)} \\ &= \frac{\frac{19!}{4! 15!}}{\frac{20!}{5! 15!}} = \frac{19!}{20!} \cdot \frac{5!}{4!} = \frac{1}{20} \cdot \frac{5!}{4!} = \frac{1}{4} \end{aligned}$$

$\begin{array}{c} | \\ \# \text{sets} - \# \text{sets not incl. 17} \\ | \\ \# \text{sets} \\ | \\ = \frac{C(20, 5) - C(19, 4)}{C(20, 5)} \end{array}$

Summary

- To calculate $P(E)$ we need to find $|E|$
- We need to count sequences or sets
- Must decide if order matters
- When elements are distinct: permutations vs. combinations

$$P(n, k) = (n)(n-1) \dots (n-k+1) = \frac{n!}{(n-k)!}$$

$$C(n, k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- **Next time:** more examples