

DSC 40A

Theoretical Foundations of Data Science I

Agenda

- Law of total probability.
- Bayes theorem.

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](https://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Getting to Campus

- You conduct a survey:
 - How did you get to campus today? Walk, bike, or drive?
 - Were you late?

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

What is the probability that a randomly selected person is late?

- A. 24%
- B. 30%
- C. 45%
- D. 50%

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

- Since everyone either walks, bikes, or drives,
 $P(\text{Late}) = P(\text{Late AND Walk}) + P(\text{Late AND Bike}) + P(\text{Late AND Drive})$
- This is called the **Law of Total Probability**.

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Suppose someone tells you that they walked.
What is the probability that they were late?

- A. 6%
- B. 20%
- C. 25%
- D. 45%

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

- Since everyone either walks, bikes, or drives,

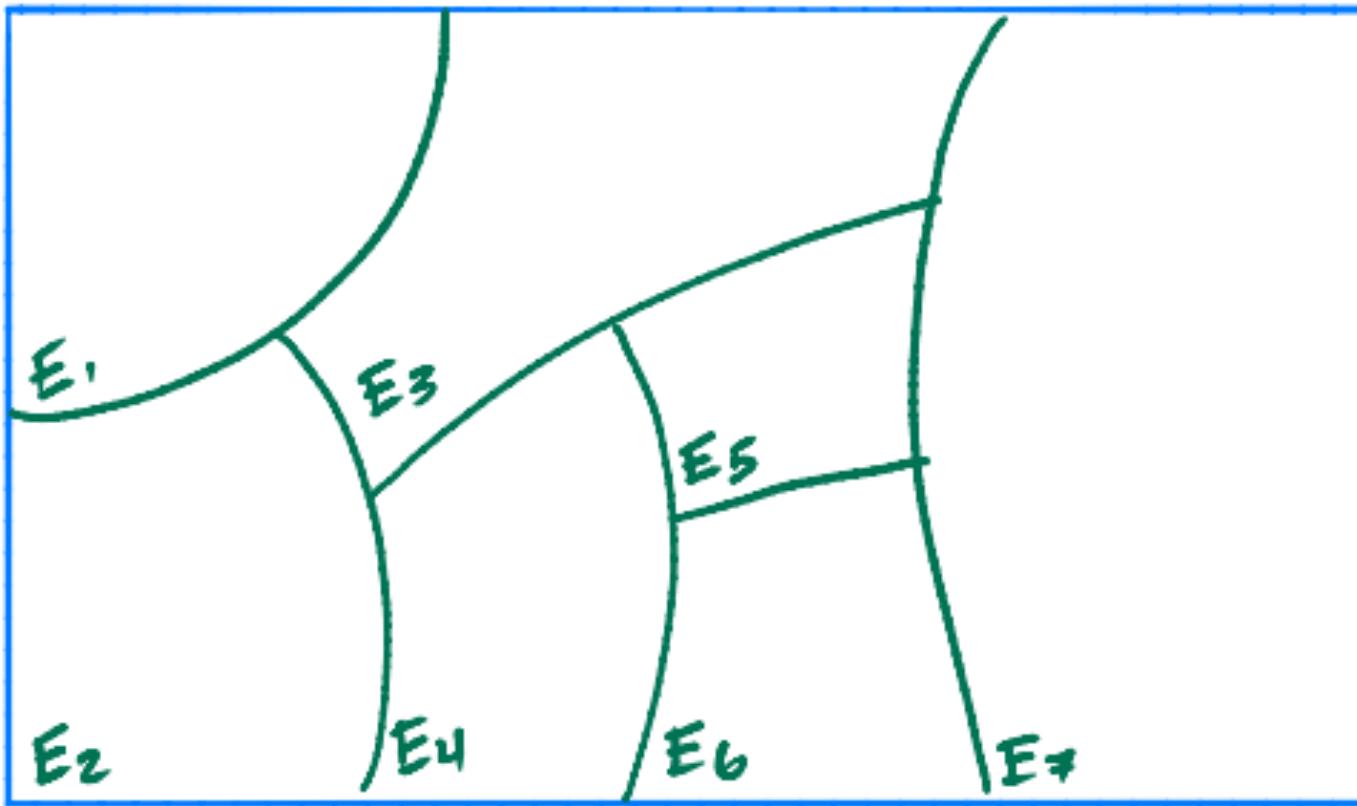
$$P(\text{Late}) = P(\text{Late AND Walk}) + P(\text{Late AND Bike}) + P(\text{Late AND Drive})$$

$$P(\text{Late}) = P(\text{Late|Walk}) * P(\text{Walk}) + P(\text{Late|Bike}) * P(\text{Bike}) + P(\text{Late|Drive}) * P(\text{Drive})$$

Partitions

- A set of events E_1, E_2, \dots, E_k is a **partition** of S if
 - $P(E_i \cap E_j) = 0$ for all i, j
 - $P(E_1) + P(E_2) + \dots + P(E_k) = 1$

Partitions



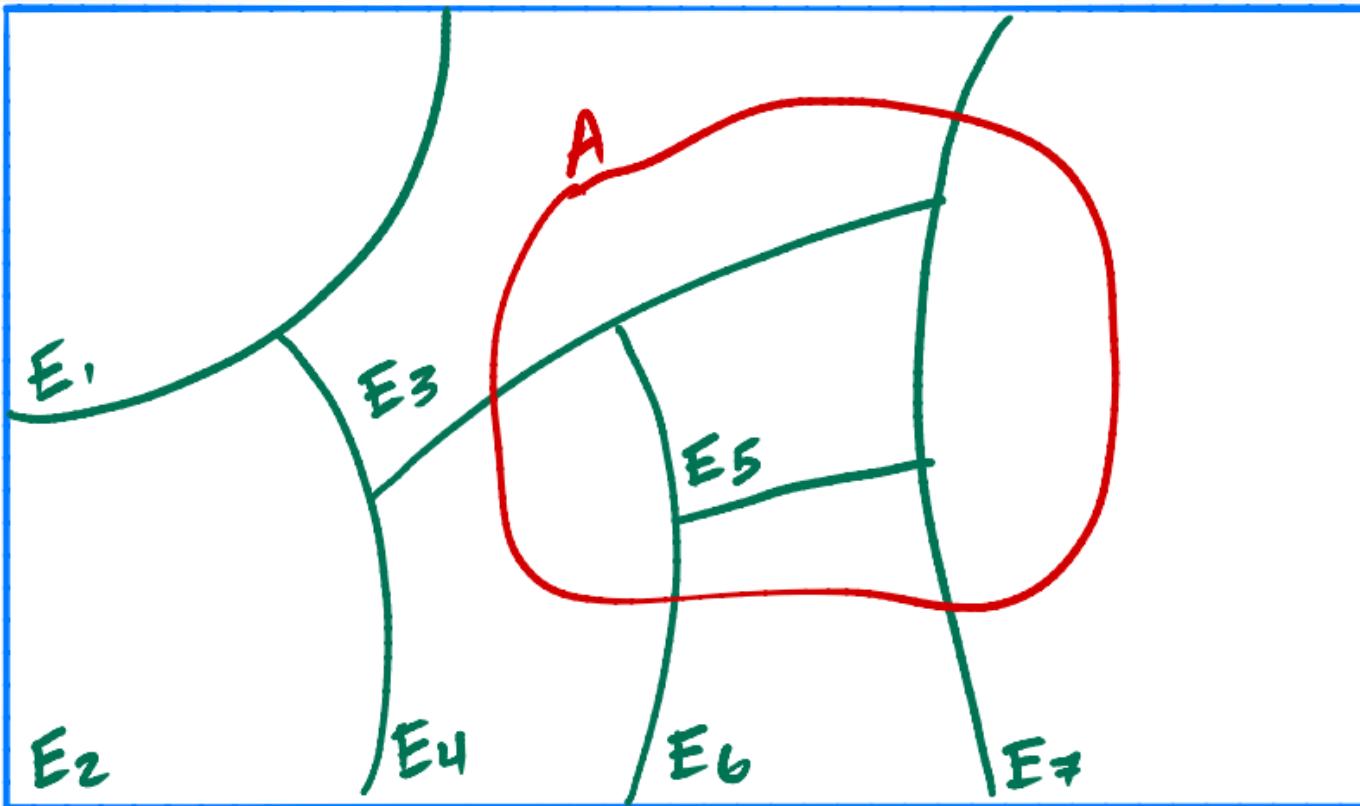
Law of Total Probability

- If A is an event and E_1, E_2, \dots, E_k is a **partition** of S , then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$

$$= \sum_{i=1}^k P(A \cap E_i)$$

Law of Total Probability



Law of Total Probability

- If A is an event and E_1, E_2, \dots, E_k is a **partition** of S , then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$

$$= \sum_{i=1}^k P(A \cap E_i)$$

- Written another way,

$$P(A) = P(A | E_1) \cdot P(E_1) + \dots + P(A | E_k) \cdot P(E_k)$$

$$= \sum_{i=1}^k P(A | E_i) \cdot P(E_i)$$

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Suppose someone is late. What is the probability that they walked? Choose the best answer.

- A. Close to 5%
- B. Close to 15%
- C. Close to 30%
- D. Close to 40%

Getting to Campus

- Suppose all you know is
 - $P(\text{Late}) = 45\%$
 - $P(\text{Walk}) = 30\%$
 - $P(\text{Late}|\text{Walk}) = 20\%$
- Can you still find $P(\text{Walk}|\text{Late})$?

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$

Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$

Bayes' Theorem:

$$\begin{aligned} P(B|A) &= \frac{P(A|B) * P(B)}{P(A)} \\ &= \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\bar{B}) * P(A|\bar{B})} \end{aligned}$$

not
B

Bayes' Theorem

For hypothesis H and evidence (data) E

$$P(H | E) = \frac{P(E|H)}{P(E)}$$

- $P(H)$ - prior, initial probability before E is observed
- $P(H|E)$ - posterior, probability of H after E is observed
- $P(E|H)$ - likelihood, probability of E if the hypothesis is true
- $P(E)$ - marginal, probability of E regardless of H

The likelihood function is a function of E , while the posterior probability is a function of H .

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

What is your first guess?

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Now, calculate it and choose the best answer.

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

Despite manufacturer's claims, only **41% chance** that cyclist used steroids.

Bayes' Theorem: Example

Example

- 1% of people have a certain genetic defect
- 90% of tests accurately detect the gene (true positives).
- 7% of the tests are false positives.

If Olaf gets a positive test result, what are the odds he actually has the genetic defect?

Bayes' Theorem: Example

- Hypothesis: Olaf has the gene, $P(H) =$
- Evidence: Olaf got a positive test result, $P(E)$
- True positive: Probability of positive test result if someone has the gene $P(E|H) =$
- False positive: Probability of positive test result if someone doesn't have the gene $P(E|\bar{H}) =$

Bayes' Theorem: Example

Calculate

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

The probability that Olaf has the gene is only _____ despite the positive test result!

Bayes' Theorem: Example

What happens if there are less false positives?

Consider $P(E|\bar{H}) = 0.02$:

The probability that Olaf has the gene is now _____.

Bayes' Theorem: Example

What happens if there are more true positives?

Consider $P(E|H) = 0.95$:

Improving the accuracy of true positives raised the probability that Olaf has the gene to ____.

Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

A = having certain features

$$P(\text{class|features}) = \frac{P(\text{features|class}) * P(\text{class})}{P(\text{features})}$$

Summary

- When a set of events partitions the sample space, the law of total probability applies.

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$

$$= \sum_{i=1}^k P(A \cap E_i)$$

- Bayes Theorem says how to express $P(B|A)$ in terms of $P(A|B)$.
- Next time:** independence and conditional independence