

DSC 40A

Theoretical Foundations of Data Science I

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](http://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Practice Problems

Example 15. What is the probability that your five-card poker hand is a straight?

52 cards

A 2 3 4 5 6 7 8 9 10 J Q K, A

4 suits

♥ ♦ ♣ ♠

S = set of 5 cards (equally likely)

card = value + suit

straight A 2 3 4 5 \rightarrow 10 J Q K A

5 cards

— — — —
↑ ↗ ↗ ↗
4 possible suits

$$\text{prob(straight)} = \frac{|E|}{|S|} = \frac{\# \text{ straight hands}}{\# \text{ sets of 5 cards}} = \frac{10 \cdot 4^5}{C(52, 5)}$$

Practice Problems

Example 16. Suppose you look at your first card as it is dealt, and you see that it is a Queen. What is the probability that your five-card hand is a straight?

S = set of 4 cards (not including Q)

$$\text{prob(straight w/ Q)} = \frac{\# \text{ set of 4 cards that make straight w/ Q}}{\# \text{ sets of 4 cards (out of } S_1)}$$

$$= \frac{3 \cdot 4^4}{C(S_1, 4)}$$

10 J Q K A
9 10 J Q K
8 9 10 J Q

Agenda

- Law of total probability.
- Bayes theorem.

Getting to Campus

- You conduct a survey:
 - How did you get to campus today? Walk, bike, or drive?
 - Were you late?

	Wdk & late	bike and not late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

all sum to 100%,

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Prob(bike)

What is the probability that a randomly selected person is late?

- A. 24%
- B. 30%
- C. 45%
- D. 50%

$$6\% + 3\% + 36\% = 45\%$$

Getting to Campus

	Late β	Not Late
A_1	6%	24%
A_2	3%	7%
A_3	36%	24%

- Since everyone either walks, bikes, or drives,

$$P(\text{Late}) = P(\text{Late AND Walk}) + P(\text{Late AND Bike}) + P(\text{Late AND Drive})$$

$$P(\beta) = P(\beta \cap A_1) + P(\beta \cap A_2) + P(\beta \cap A_3)$$

- This is called the **Law of Total Probability**.

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

$\cap = \text{And} = +$

Suppose someone tells you that they walked. What is the probability that they were late?

- A. 6%
- B. 20%**
- C. 25%
- D. 45%

Hint: conditional probability!

$$P(\text{late} \mid \text{walk}) = \frac{P(\text{late} \cap \text{walk})}{P(\text{walk})} = \frac{6\%}{30\%} = \frac{1}{5} = 20\%$$

Need $P(\text{walk}) = P(\text{walk} + \text{late}) + P(\text{walk} + \text{not late})$

$$= 6\% + 24\% = 30\%$$

multiplication rule

$$P(\text{late} \cap \text{walk}) = P(\text{late} \mid \text{walk}) P(\text{walk})$$

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

- Since everyone either walks, bikes, or drives,

$$P(\text{Late}) = \underline{P(\text{Late AND Walk})} + \underline{P(\text{Late AND Bike})} + \underline{P(\text{Late AND Drive})}$$

$$\begin{aligned}P(\text{Late}) &= \underline{P(\text{Late|Walk})} * \underline{P(\text{Walk})} + \underline{P(\text{Late|Bike})} * \underline{P(\text{Bike})} \\ &+ \underline{P(\text{Late|Drive})} * \underline{P(\text{Drive})}\end{aligned}$$

Partitions

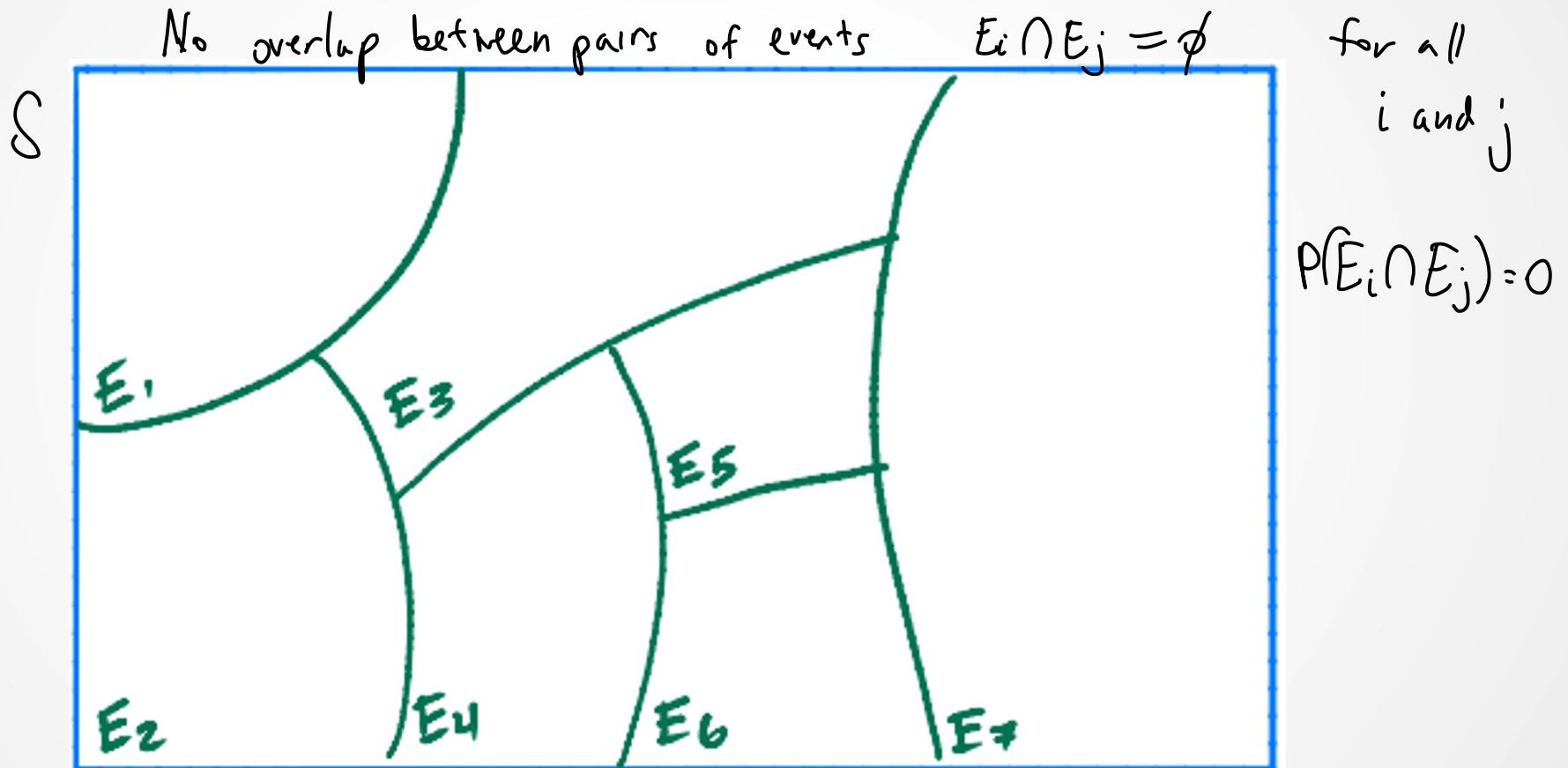
- A set of events E_1, E_2, \dots, E_k is a **partition** of S if
 - $P(E_i \cap E_j) = 0$ for all i, j \leftarrow mutually exclusive
 - $P(E_1) + P(E_2) + \dots + P(E_k) = 1 = \sum P(E_k) = P(S)$
Every outcome in S belongs to ^{k} only one of the E_k 's

Walk	<table border="1"><tr><td>20%</td></tr><tr><td>10%</td></tr><tr><td>60%</td></tr></table>	20%	10%	60%
20%				
10%				
60%				
bike				
drive				

Late	Not late
45%	55%

either late or not late
cannot be both

Partitions



Law of Total Probability

(mutually exclusive)

- If A is an event and E_1, E_2, \dots, E_k is a **partition** of S , then

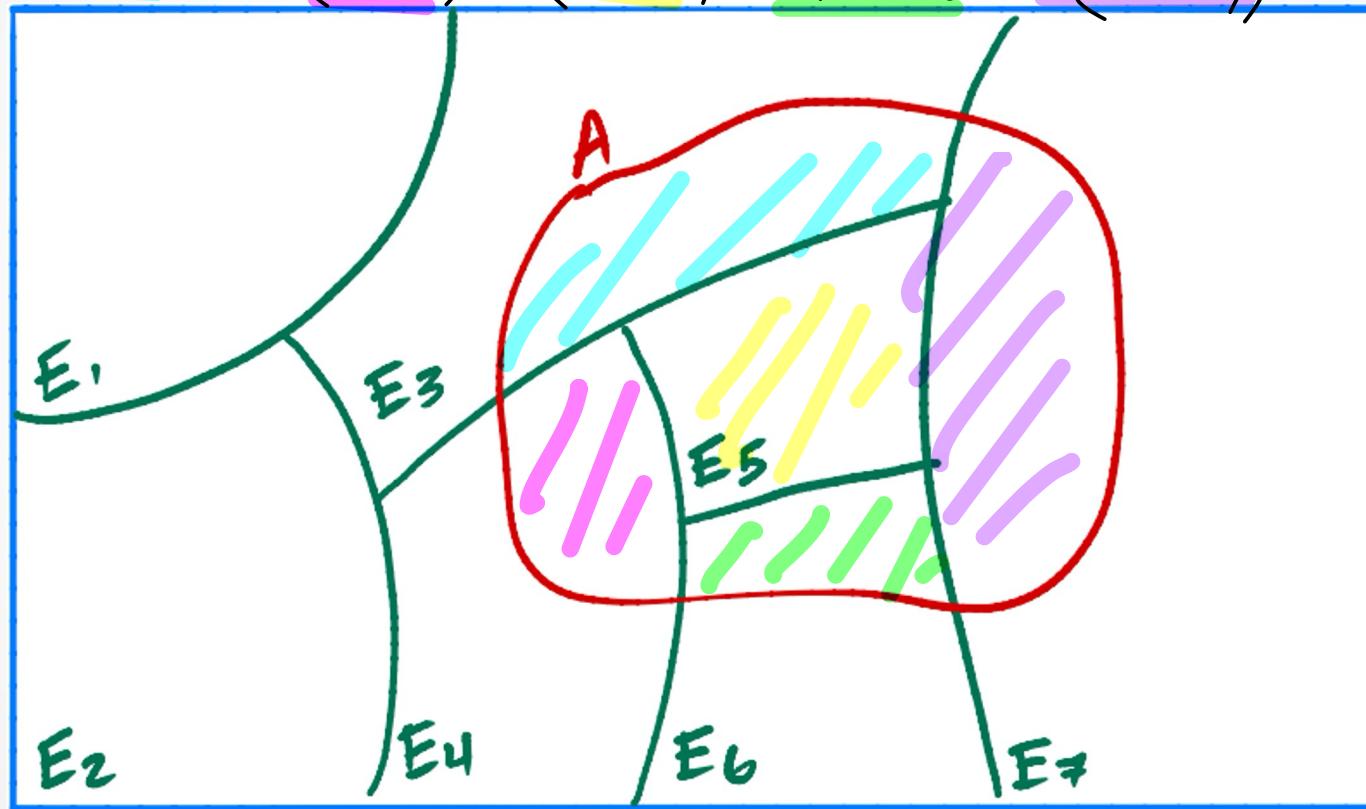
$$P(A) = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$

$$= \sum_{i=1}^k P(A \cap E_i)$$

Law of Total Probability

$$P(A) = P(A \cap E_3) + P(A \cap E_4) + P(A \cap E_5) + P(A \cap E_6) + P(A \cap E_7)$$

AcS



$$A \cap E_1 = \emptyset$$

$$A \cap E_2 = \emptyset$$

$$P(A \cap E_1) = 0$$

$$= P(A \cap E_2)$$

Law of Total Probability

- If A is an event and E_1, E_2, \dots, E_k is a **partition** of S , then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$

$$= \sum_{i=1}^k P(A \cap E_i)$$

- Written another way,

$$\begin{aligned} P(A) &= P(A | E_1) \cdot P(E_1) + \dots + P(A | E_k) \cdot P(E_k) \\ &= \sum_{i=1}^k \underbrace{P(A | E_i) \cdot P(E_i)}_{P(A \cap E_i)} \xrightarrow{\text{multiplication rule}} \end{aligned}$$

Getting to Campus

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

= 45%.

Suppose someone is late. What is the probability that they walked? Choose the best answer.

- A. Close to 5%
- B. Close to 15%
- C. Close to 30%
- D. Close to 40%

$$P(A|B) \neq P(B|A)$$

$$P(\text{walk} | \text{late}) = \frac{P(\text{walk} \cap \text{late})}{P(\text{late})} = \frac{6\%}{45\%} \approx 13\%$$

$$P(\text{walk} | \text{late}) \neq P(\text{late} | \text{walk})$$

Getting to Campus

- Suppose all you know is

- $P(\text{Late}) = 45\%$
- $P(\text{Walk}) = 30\%$
- $P(\text{Late}|\text{Walk}) = 20\%$

- Can you still find $P(\text{Walk}|\text{Late})$?

$$P(\text{Walk}|\text{late}) = \frac{P(\text{walk} \cap \text{late})}{P(\text{late})} = \frac{P(\text{late}|\text{walk}) \cdot P(\text{walk})}{P(\text{late})} = \frac{0.2 \cdot 0.3}{0.45} \approx 13\%$$

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(\underline{B|A}) = P(A \text{ and } B) = P(B) * P(\underline{A|B})$$

Bayes' Theorem:

$$\underline{P(B|A)} = \frac{\underline{P(A|B)} * P(B)}{P(A)}$$

so

can calculate $P(A)$
using law of total prob.

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$

Bayes' Theorem:

$$\begin{aligned} P(B|A) &= \frac{P(A|B) * P(B)}{P(A)} \\ &= \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\bar{B}) * P(A|\bar{B})} \end{aligned}$$

not
B

Bayes' Theorem

For hypothesis H and evidence (data) E

$$P(H | E) = \frac{P(E|H)}{P(E)}$$

- $P(H)$ - prior, initial probability before E is observed
- $P(H|E)$ - posterior, probability of H after E is observed
- $P(E|H)$ - likelihood, probability of E if the hypothesis is true
- $P(E)$ - marginal, probability of E regardless of H

The likelihood function is a function of E , while the posterior probability is a function of H .

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

What is your first guess?

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Now, calculate it and choose the best answer.

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

Bayes' Theorem: Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**.

What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

Despite manufacturer's claims, only **41% chance** that cyclist used steroids.

Bayes' Theorem: Example

Example

- 1% of people have a certain genetic defect
- 90% of tests accurately detect the gene (true positives).
- 7% of the tests are false positives.

If Olaf gets a positive test result, what are the odds he actually has the genetic defect?

Bayes' Theorem: Example

- Hypothesis: Olaf has the gene, $P(H) =$
- Evidence: Olaf got a positive test result, $P(E)$
- True positive: Probability of positive test result if someone has the gene $P(E|H) =$
- False positive: Probability of positive test result if someone doesn't have the gene $P(E|\bar{H}) =$

Bayes' Theorem: Example

Calculate

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

The probability that Olaf has the gene is only _____ despite the positive test result!

Bayes' Theorem: Example

What happens if there are less false positives?

Consider $P(E|\bar{H}) = 0.02$:

The probability that Olaf has the gene is now _____.

Bayes' Theorem: Example

What happens if there are more true positives?

Consider $P(E|H) = 0.95$:

Improving the accuracy of true positives raised the probability that Olaf has the gene to ____.

Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

A = having certain features

$$P(\text{class|features}) = \frac{P(\text{features|class}) * P(\text{class})}{P(\text{features})}$$

Summary

- When a set of events partitions the sample space, the law of total probability applies.

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$

$$= \sum_{i=1}^k P(A \cap E_i)$$

- Bayes Theorem says how to express $P(B|A)$ in terms of $P(A|B)$.
- Next time:** independence and conditional independence