

DSC 40A

Theoretical Foundations of Data Science I

Announcements

- Homework 7 was released and due 12/3 – no slip days.
- Gal's OH today at 4:15 instead of Wednesday.

Question

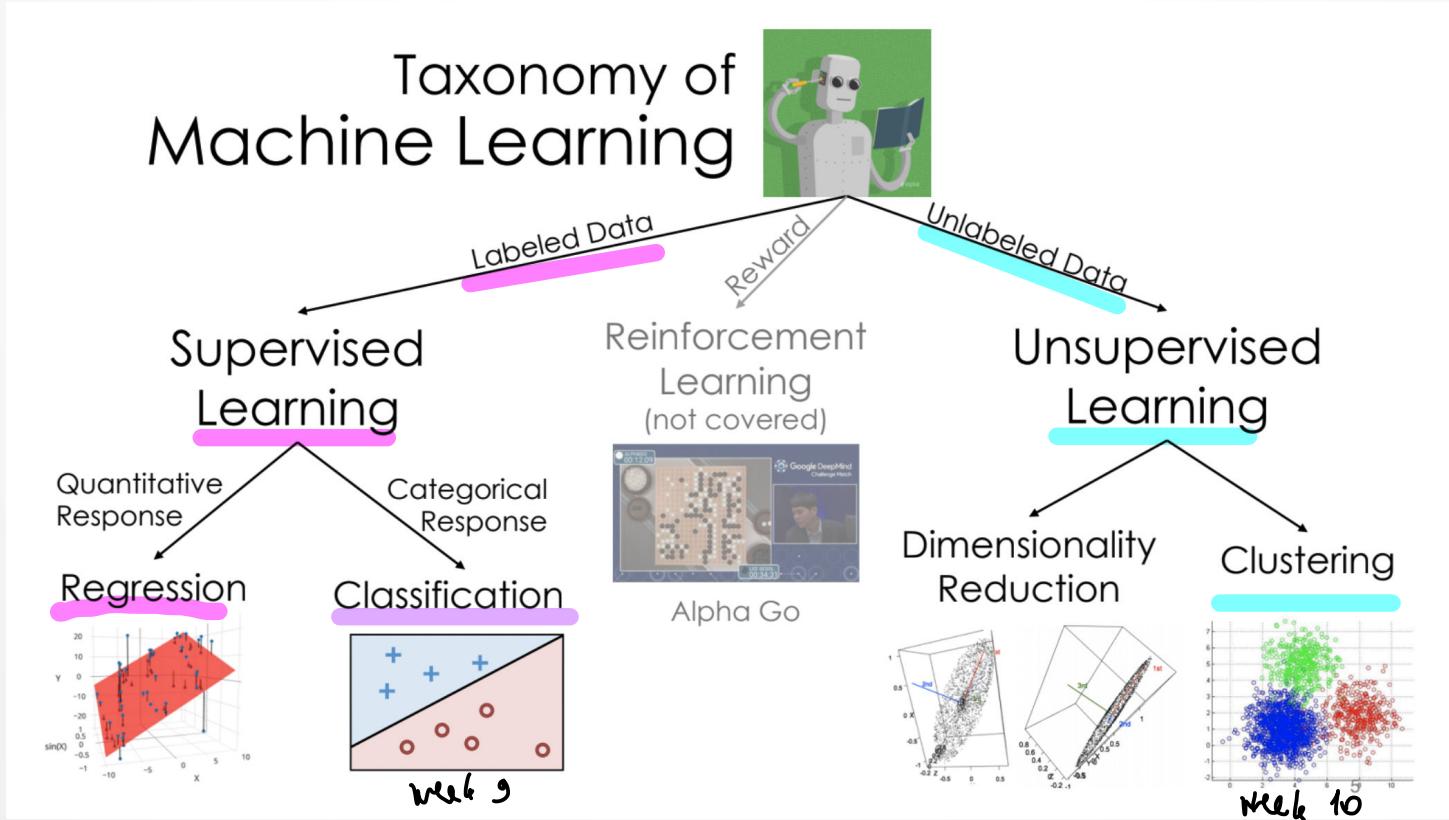
Answer at q.dsc40a.com

Remember, you can always ask questions at
[q.dsc40a.com!](http://q.dsc40a.com)

If the direct link doesn't work, click the "Lecture
Questions" link in the top right corner of dsc40a.com.

Last Week

- We defined Bayes' Theorem:


$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)} = \frac{\underline{P(A|B)} \underline{P(B)}}{\underline{P(A|B)P(B)} + \underline{P(A|\bar{B})P(\bar{B})}}$$

- Bayes' Theorem describes how to update the probability of one event given that another has occurred.

Naïve Bayes Classifier

Today

- Using Bayes' Theorem to solve the classification problem

Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

B = belonging to a certain class

A = having certain features

$$P(\text{class|features}) = \frac{P(\text{features|class}) * P(\text{class})}{P(\text{features})}$$

Classification

- Making predictions based on examples (training data)
- Response variable is categorical
- Categories are called *classes*
- Examples:
 - decide whether patient has kidney disease *binary - yes, no*
 - identify handwritten digits $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ *MNIST*
 - determine whether an avocado is ripe
 - predict whether credit card activity is fraudulent

Example

Color	Ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

You have a green-black avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Which class would you predict?

- A. ripe
- B. unripe

Example

Color	Ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

You have a green-black avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate two probabilities:

$$P(\text{ripe} \mid \text{green-black}) = \frac{\#\text{ ripe and green black}}{\#\text{ green black}} = \frac{3}{5}$$

$$P(\text{unripe} \mid \text{green-black}) = \frac{2}{5}$$

Then choose the class according to the **larger** of these two probabilities.

$$\frac{3}{5} > \frac{2}{5} \Rightarrow \text{ripe}$$

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

$A =$ have certain feature

$B =$ belong to a class

$$P(\text{class|features}) = \frac{P(\text{features|class}) * P(\text{class})}{P(\text{features})}$$

estimate this
data

if no +

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

$$P(\text{class|features}) = \frac{P(\text{features|class}) * P(\text{class})}{P(\text{features})}$$

Can all be
estimated
from the
training data

Avocado Ripeness

Color	Ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

You have a green-black avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$
$$P(\text{green black}|\text{ripe}) = \frac{3}{7},$$

$$P(\text{ripe}) = \frac{7 \text{ ripe avo.}}{11 \text{ total avo.}}$$

$$P(\text{green-black}) = \frac{5}{11}$$

$$P(\text{ripe}|\text{green-black}) =$$

$$\frac{P(\text{green black}|\text{ripe}) P(\text{ripe})}{P(\text{green-black})} = \frac{\frac{3}{7} \cdot \frac{7}{11}}{\frac{5}{11}} = \frac{3}{5}$$

$$P(\text{unripe}|\text{green-black}) = \dots = \frac{2}{5}$$

Avocado Ripeness

Color	Ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

You have a green-black avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

$$P(\text{ripe}|\text{green-black})$$

VA?

$$P(\text{unripe}|\text{green-black})$$

} have same denominator
we don't need to calc.
just compare numerators

Avocado Ripeness

Color	Ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

You have a green-black avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class|features}) = \frac{P(\text{features|class}) * P(\text{class})}{P(\text{features})}$$

Shortcut: Both probabilities have same denominator. To find larger one, choose one with larger numerator.

$P(\text{ripe} | \text{green-black}) \propto \frac{3}{7} \cdot \frac{7}{11} = \frac{3}{11}$

$P(\text{unripe} | \text{green-black}) \propto \frac{2}{7} \cdot \frac{4}{11} = \frac{2}{11}$

multiple features

→ response variable (categorical)

More Features

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate two probabilities:

$P(\text{ripe} \mid \text{firm, green-black, Zutano})$

Problem: no firm,gb, zutano avo in data

$P(\text{unripe} \mid \text{firm, green-black, Zutano})$

Then choose the class according to the **larger** of these two probabilities.

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Problem: We have not seen an avocado with all these features. Both probabilities will be undefined.

$$P(\text{ripe} \mid \text{firm, green-black, Zutano}) \\ = \frac{P(\text{ripe} \& \text{firm, gb, zutano})}{P(\text{firm, gb, zutano})} \xrightarrow{\text{undefined}} 50\%$$

$$P(\text{unripe} \mid \text{firm, green-black, Zutano})$$

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Solution: Use Bayes' Theorem, plus a simplifying assumption, to calculate the two numerators.

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Simplifying assumption: Within a given class, the features are independent.

Conditional independence assumption

$$P(\text{firm, green-black, Zutano} | \text{ripe}) =$$

$$P(\text{firm} | \text{ripe}) * P(\text{green-black} | \text{ripe}) * P(\text{Zutano} | \text{ripe})$$

Can calculate even if we don't have an avocado with all 3 features

Conditional Independence

- Recall that A and B are independent if

$$P(A \text{ and } B) = P(A) * P(B)$$

- A and B are conditionally independent given C if

$$P((A \text{ and } B)|C) = P(A|C) * P(B|C)$$

feat1 class feat2 class

- Given that C occurs, this says that A and B are independent of one another.

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

P(ripe) ^{green black, firm zutano}
 P(class|features) ^{conditional}
 P(features) ^{Independence}

prior
 $\frac{7}{11}$

$$\begin{aligned}
 & \hookrightarrow P(\text{firm}|\text{ripe}) \cdot P(\text{gb}|\text{ripe}) \cdot P(\text{zutano}|\text{ripe}) \\
 &= \frac{1}{7} \quad \frac{3}{7} \quad \frac{2}{7}
 \end{aligned}$$

$$\rightarrow \text{Prüfung (Tests)} \propto \frac{1 \cdot 3 \cdot 2}{7 \cdot 7 \cdot 7} \cdot \frac{7}{49} = \frac{6}{539}$$

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

common mistake

$$P(A|B) = 1 - P(\bar{A}|B) \neq 1 - P(A|\bar{B})$$

Assuming conditional independence of features given the class, calculate $P(\text{firm, green-black, Zutano} | \text{unripe})$.

- A. 0
- B. 1/4
- C. 3/16
- D. $1 - (1/7 * 3/7 * 2/7) \neq 1 - P(\frac{\text{firm, gb, zutano}}{\text{unripe}} | \text{ripe})$

Avocado Ripeness

Color	Softness	Variety	Ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Naïve Bayes Algorithm

- Bayes' Theorem shows how to calculate $P(\text{class} | \text{features})$.

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

- Rewrite the numerator, using the naïve assumption of conditional independence of features given the class.
- Estimate each term in the numerator based on the training data.
- Select class based on whichever has the larger numerator.

Summary

- The Naïve Bayes algorithm gives a strategy for classifying data according to its features.
- It relies on an assumption of conditional independence of the features.
- **Next time:** application to text classification
